
This document contains information on a product under development at Advanced Micro
Devices (AMD). The information is intended to help you evaluate this product. AMD re-
serves the right to change or discontinue work on this proposed product without notice.

Software
Development
Guide

AMD-K5

PROCESSOR

Publication # 20007 Rev: E Amendment/0
Issue Date: January 1997

TM

© 1997 Advanced Micro Devices, Inc. All rights reserved.

Advanced Micro Devices, Inc. ("AMD") reserves the right to make changes in
its products without notice in order to improve design or performance charac-
teristics.

The information in this publication is believed to be accurate at the time of
publication, but AMD makes no representations or warranties with respect to
the accuracy or completeness of the contents of this publication or the
information contained herein, and reserves the right to make changes at any
time, without notice. AMD disclaims responsibility for any consequences
resulting from the use of the information included in this publication.

This publication neither states nor implies any representations or warranties
of any kind, including but not limited to, any implied warranty of
merchantability or fitness for a particular purpose. AMD products are not
authorized for use as critical components in life support devices or systems
without AMD’s written approval. AMD assumes no liability whatsoever for
claims associated with the sale or use (including the use of engineering
samples) of AMD products except as provided in AMD’s Terms and Conditions
of Sale for such product.

Trademarks

AMD, the AMD logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.
Am486 is a registered trademark, and AMD-K5 is a trademark of Advanced Micro Devices, Inc.

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

Contents iii

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

Contents

AMD-K5™ Processor x86 Architecture Extensions

Additions to the EFLAGS Register . 2

Control Register 4 (CR4) Extensions . 2

Machine-Check Exceptions . 4

4-Mbyte Pages . 4

Global Pages . 9

Virtual-8086 Mode Extensions (VME) . 12

Protected Virtual Interrupt (PVI) Extensions 24

Implementation of Write Allocate . 24

Model-Specific Registers (MSRs) . 25

Machine-Check Address Register (MCAR) . 25

Machine-Check Type Register (MCTR) . 26

Time Stamp Counter (TSC) . 27

Array Access Register (AAR) . 27

Hardware Configuration Register (HWCR) . 28

Write Allocate Top-of-Memory and
Control Register (WATMCR). 28

Write Allocate Programmable Memory
Range Register (WAPMRR) . 28

New Instructions . 28

CPUID . 29

CMPXCHG8B. 31

MOV to and from CR4 . 32

RDTSC . 33

RDMSR and WRMSR . 34

RSM . 36

Illegal Instruction (Reserved Opcode) . 37

iv Contents

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

Code Optimization for the AMD-K5 Processor

Code Optimization . 39

General Superscalar Techniques. 39

Techniques Specific to the AMD-K5 Processor 41

Dispatch and Execution Timing . 43

Notation . 43

Integer Instructions . 46

Integer Dot Product Example . 55

Floating-Point Instructions . 57

AMD-K5 Processor Initialization

General Registers . 65

Segment Registers . 66

EIP and EFLAGS. 66

Control and Debug Registers. 66

Model-Specific Registers . 67

Caches and TLB. 67

Floating-Point Unit . 67

AMD-K5 Processor Test and Debug

Hardware Configuration Register (HWCR) . 71

Built-In Self-Test (BIST) . 73

Normal BIST . 73

Test Access Port (TAP) BIST . 74

Output-Float Test . 75

Cache and TLB Testing. 75

Array Access Register (AAR) . 76

Array Pointer. 77

Array Test Data . 78

Contents v

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

Debug Registers . 84

Standard Debug Functions. 84

I/O Breakpoint Extension . 84

Debug Compatibility with Pentium Processor 85

Branch Tracing . 85

Functional-Redundancy Checking . 86

Boundary Scan Architecture Support . 87

Boundary Scan Test Functional Description 88

Boundary Scan Architecture . 89

Registers . 90

JTAG Register Organization . 91

Public Instructions . 92

Hardware Debug Tool (HDT). 112

Appendix A Cache

Array Pointer Formats . A-1

AMD-K5 Model 0 Array Data Formats . A-3

AMD-K5 Models 1, 2, and 3 Array Data Formats A-5

vi Contents

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

List of Tables vii

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

List of Tables
Table 1-1. Control Register 4 (CR4) Fields. 3
Table 1-2. Page-Directory Entry (PDE) Fields 8
Table 1-3. Page-Table Entry (PTE) Fields 11
Table 1-4. Virtual-Interrupt Additions to EFLAGS Register 15
Table 1-5A. Instructions that Modify the IF or

VIF Flags—Real Mode . 16
Table 1-5B. Instructions that Modify the IF or

VIF Flags—Protected Mode. 17
Table 1-5C. Instructions that Modify the IF or

VIF Flags—Virtual-8086 Mode 18
Table 1-5D. Instructions that Modify the IF or

VIF Flags—Virtual-8086 Mode Interrupt
Extensions (VME) . 19

Table 1-5E. Instructions that Modify the IF or
VIF Flags—Protected Mode Virtual Interrupt
Extensions (PVI) . 20

Table 1-6. Interrupt Behavior and Interrupt-Table Access. 23
Table 1-7. Machine-Check Type Register (MCTR) Fields. 27
Table 1-8. CPU Clock Frequencies, Bus Frequencies, and

P-Rating Strings. 29
Table 2-1. Integer Instructions. 46
Table 2-2. Integer Dot Product Internal Operations Timing 56
Table 2-3. Floating-Point Instructions. 57
Table 3-1. Segment Register Attribute Fields Initial Values 66
Table 4-1. Hardware Configuration Register (HWCR) Fields . . . 72
Table 4-2. BIST Error Bit Definition in EAX Register 74
Table 4-3. Array IDs in Array Pointers . 77
Table 4-4. Branch-Trace Message Special Bus Cycle Fields 86
Table 4-5. Test Access Port (TAP) ID Code 92
Table 4-6. Public TAP Instructions . 93
Table 4-7. Control Bit Definitions . 96
Table 4-8. Boundary Scan Register Bit Definitions (Model 0) . . . 96
Table 4-9. Boundary Scan Register Bit Definitions (Models 1,

2, and 3) . 104
Table A-1. Cache Array Pointer Formats A-2
Table A-2. Cache Array Identification Values A-2
Table A-3. AMD-K5 Model 0 ICACHE Physical Tags A-3

viii List of Tables

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

Table A-4. AMD-K5 Model 0 DCACHE Physical Tags A-3
Table A-5. AMD-K5 Model 0 DCACHE Data. A-3
Table A-6. AMD-K5 Model 0 DCACHE Linear Tag A-3
Table A-7. AMD-K5 Model 0 ICACHE Instructions A-4
Table A-8. AMD-K5 Model 0 ICACHE Linear Tag A-4
Table A-9. AMD-K5 Model 0 ICACHE Valid Bits A-4
Table A-10. AMD-K5 Model 0 ICACHE Branch Prediction A-4
Table A-11. AMD-K5 Model 0 TLB 4-Kbyte Linear Tag A-4
Table A-12. AMD-K5 Model 0 TLB 4-Kbyte Physical Page Frame A-5
Table A-13. AMD-K5 Model 0 TLB 4-Mbyte Virtual Tag A-5
Table A-14. AMD-K5 Model 0 TLB 4-Mbyte Physical Page Frame A-5
Table A-15. AMD-K5 Models 1, 2, and 3 ICACHE Physical Tags . A-5
Table A-16. AMD-K5 Models 1, 2, and 3 DCACHE Physical Tags. A-5
Table A-17. AMD-K5 Models 1, 2, and 3 DCACHE Data A-5
Table A-18. AMD-K5 Models 1, 2, and 3 DCACHE Linear Tag . . . A-6
Table A-19. AMD-K5 Models 1, 2, and 3 ICACHE Instructions. . . A-6
Table A-20. AMD-K5 Models 1, 2, and 3 ICACHE Linear Tag. . . . A-6
Table A-21. AMD-K5 Models 1, 2, and 3 ICACHE Valid Bits A-6
Table A-22. AMD-K5 Models 1, 2, and 3 ICACHE Branch

Prediction . A-6
Table A-23. AMD-K5 Models 1, 2, and 3 TLB 4-Kbyte

Linear Tag . A-6
Table A-24. AMD-K5 Models 1, 2, and 3 TLB 4-Kbyte

Physical Page Frame . A-6
Table A-25. AMD-K5 Models 1, 2, and 3 TLB 4-Mbyte

Virtual Tag . A-7
Table A-26. AMD-K5 Models 1, 2, and 3 TLB 4-Mbyte

Physical Page Frame . A-7

List of Figures ix

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

List of Figures
Figure 1-1. Control Register 4 (CR4) . 2
Figure 1-2. 4-Kbyte Paging Mechanism . 5
Figure 1-3. 4-Mbyte Paging Mechanism . 6
Figure 1-4. Page-Directory Entry (PDE). 7
Figure 1-5. Page-Table Entry (PTE) . 10
Figure 1-6. EFLAGS Register . 15
Figure 1-7. Task State Segment (TSS) . 22
Figure 1-8. Machine-Check Address Register (MCAR) 25
Figure 1-9. Machine-Check Type Register (MCTR) 26
Figure 4-1. Hardware Configuration Register (HWCR) 71
Figure 4-2. Array Access Register (AAR). 76
Figure 4-3. Test Formats: Data-Cache Tags 78
Figure 4-4. Test Formats: Data-Cache Data 79
Figure 4-5. Test Formats: Instruction-Cache Tags. 80
Figure 4-6. Test Formats: Instruction-Cache Instructions 81
Figure 4-7. Test Formats: 4-Kbyte TLB. 82
Figure 4-8. Test Formats: 4-Mbyte TLB . 83

Revision History x

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

Revision History

Date Revision Description

Jan. 1997 E

"TLB Flushing" added on page 9.

"Implementation of Write Allocate" on page 24.

The WATMCR register added on page 25.

The WAPMRR register added on page 25.

"Write Allocate Top-of-Memory and Control
Register (WATMCR)" added on page 28.

"Write Allocate Programmable Memory Range
Register (WAPMRR)" added on page 28.

Table 1-8, “CPU Clock Frequencies, Bus
Frequencies, and P-Rating Strings,” on page 29
updated for models 2 and 3.

Figure 4-1, on page 71 updated for the write
allocate enable bit and option 100 removed from
the debug control field.

Table 4-1 on page 72 updated for the write
allocate enable bit and the HDT trap option in
debug control bits changed to reserved.

Table 4-5 on page 92 updated to show the least-
significant bit is set to 1.

The second paragraph in "Hardware Debug Tool
(HDT)" on page 112 removed.

All references to model 1 changed to models 1, 2,
and 3.

AMD-K5™ Processor x86 Architecture Extensions 1

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

1
AMD-K5™ Processor
x86 Architecture Extensions

The AMD-K5™ processor is compatible with the instruction
set, programming model, memory management mechanisms,
and other software infrastructure supported by the 486 and
Pentium (735\90, 815\100) processors. Operating system and
application software that runs on the Pentium processor can be
executed on the AMD-K5 processor without modification.
Because the AMD-K5 processor takes a significantly different
approach to implementing the x86 architecture, some subtle
differences from the Pentium processor may be visible to sys-
tem and code developers. These differences are described in
Appendix A of the AMD-K5 Processor Technical Reference Man-
ual, order# 18524.

Call AMD at 1-800-222-9232 to order AMD-K5 processor sup-
port documents.

Before implementing the AMD-K5 processor model-specific
features, check CPUID for supported feature flags. See
“CPUID” on page 29 for more information.

2 AMD-K5™ Processor x86 Architecture Extensions

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

Additions to the EFLAGS Register

The EFLAGS register on the AMD-K5 processor defines new
bits in the upper 16 bits of the register to support extensions to
the operating modes. See “Virtual-8086 Mode Extensions
(VME)” on page 12 and “CPUID” on page 29 for additional
information.

Control Register 4 (CR4) Extensions

Control Register 4 (CR4) was added on the AMD-K5 processor.
The bits in this register control the various architectural exten-
sions. The majority of the bits are reserved. The default state
of CR4 is all zeros. Figure 1-1 shows the register and describes
the bits. The architectural extensions are described in Table
1-1.

Figure 1-1. Control Register 4 (CR4)

Global Page Extension GPE 7
Machine Check Enable MCE 6
Page Size Extension PSE 4
Debugging Extensions DE 3
Time Stamp Disable TSD 2
Protected Virtual Interrupts PVI 1
Virtual-8086 Mode Extensions VME 0

7 6 5 4 3 2 1 031

P
S
E

T
S
D

M
C
E

V
M
E

D
E

P
V
I

G
P
E

Reserved

8

Control Register 4 (CR4) Extensions 3

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

Table 1-1. Control Register 4 (CR4) Fields

Bit Mnemonic Description Function

7 GPE Global Page
Extension

Enables retention of designated entries in the 4-Kbyte TLB or
4-Mbyte TLB during invalidations.

1 = enabled, 0 = disabled.

See “Global Pages” on page 9 for details.

6 MCE Machine-Check Enable

Enables machine-check exceptions.

1 = enabled, 0 = disabled.

See “Machine-Check Exceptions” on page 4 for details.

4 PSE Page Size
Extension

Enables 4-Mbyte pages.

1 = enabled, 0 = disabled.

See “4-Mbyte Pages” on page 4 for details.

3 DE
Debugging
Extensions

Enables I/O breakpoints in the DR7–DR0 registers.

1 = enabled, 0 = disabled.

See “Debug Registers” on page 84 for details.

2 TSD
Time Stamp
Disable

Selects privileged (CPL=0) or non-privileged (CPL>0) use of
the RDTSC instruction, which reads the Time Stamp Counter
(TSC).

1 = CPL must be 0, 0 =any CPL.

See “Time Stamp Counter (TSC)” on page 27 for details.

1 PVI Protected Virtual
Interrupts

Enables hardware support for interrupt virtualization in Pro-
tected mode.

1 = enabled, 0 = disabled.

See “Protected Virtual Interrupt (PVI) Extensions” on page 24
for details.

0 VME Virtual-8086
Mode Extensions

Enables hardware support for interrupt virtualization in Vir-
tual-8086 mode.

1 = enabled, 0 = disabled.

See “Virtual-8086 Mode Extensions (VME)” on page 12 for
details.

4 AMD-K5™ Processor x86 Architecture Extensions

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

Machine-Check Exceptions

Bit 6 in CR4, the machine-check enable (MCE) bit, controls
generation of machine-check exceptions (12h). If enabled by
the MCE bit, these exceptions are generated when either of
the following occurs:

■ System logic asserts BUSCHK to identify a parity or other
type of bus-cycle error

■ The processor asserts PCHK while system logic asserts PEN
to identify an enabled parity error on the D63–D0 data bus

Whether or not machine-check exceptions are enabled, the
processor does the following when either type of bus error
occurs:

■ Latches the physical address of the failed cycle in its 64-bit
machine-check address register (MCAR)

■ Latches the cycle definition of the failed cycle in its 64-bit
machine-check type register (MCTR)

Software can read the MCAR and MCTR registers in the excep-
tion handling routine with the RDMSR instruction, as
described on page 34. The format of the registers is shown in
Figure 1-8 and Figure 1-9.

If system software has cleared the MCE bit in CR4 to 0 before
a bus-cycle error, the processor attempts to continue execution
without generating a machine-check exception. It still latches
the address and cycle type in MCAR and MCTR as described in
this section.

4-Mbyte Pages

The TLBs in the 486 and 386 processors support only 4-Kbyte
pages. However, large data structures such as a video frame
buffer or non-paged operating system code can consume many
pages and easily overrun the TLB. The AMD-K5 processor
accommodates large data structures by allowing the operating
system to specify 4-Mbyte pages as well as 4-Kbyte pages, and
by implementing a four-entry, fully-associative 4-Mbyte TLB
which is separate from the 128-entry, 4-Kbyte TLB. From a
given page directory, the processor can access both 4-Kbyte
pages and 4-Mbyte pages, and the page sizes can be intermixed

Control Register 4 (CR4) Extensions 5

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

within a page directory. When the Page Size Extension (PSE)
bit in CR4 is set, the processor translates linear addresses
using either the 4-Kbyte TLB or the 4-Mbyte TLB, depending
on the state of the page size (PS) bit in the page-directory
entry. Figures 1-2 and 1-3 show how 4-Kbyte and 4-Mbyte page
translation work.

Figure 1-2. 4-Kbyte Paging Mechanism

Linear Address

4-Kbyte
Page

Directory

4-Kbyte
Page
Table

4-Kbyte
Page

CR3

011122131 22

Page Directory
Offset

Page Table
Offset

Page
Offset

PDE

PTE

Byte

6 AMD-K5™ Processor x86 Architecture Extensions

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

Figure 1-3. 4-Mbyte Paging Mechanism

To enable the 4-Mbyte paging option:

1. Set the Page Size Extension (PSE) bit in CR4 to 1.

2. Set the Page Size (PS) bit in the page-directory entry to 1.

3. Write the physical base addresses of 4-Mbyte pages in bits
31–22 of page-directory entries. (Bits 21–12 of these entries
must be cleared to 0 or the processor will generate a page
fault.)

4. Load CR3 with the base address of the page directory that
contains these page-directory entries.

Figure 1-1 and Table 1-1 show the fields in CR4. Figure 1-4 and
Table 1-2 show the fields in a page-directory entry.

Linear Address

4-Mbyte
Page

Directory

4-Mbyte
Page

CR3

02131 22

Page Directory
Offset

Page
Offset

PDE

Byte

Control Register 4 (CR4) Extensions 7

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

4-Kbyte page translation differs from 4-Mbyte page translation
in the following ways:

■ 4-Kbyte Paging (Figure 1-2)—Bits 31–22 of the linear address
select an entry in a 4-Kbyte page directory in memory,
whose physical base address is stored in CR3. Bits 21–12 of
the linear address select an entry in a 4-Kbyte page table in
memory, whose physical base address is specified by bits
31–22 of the page-directory entry. Bits 11–0 of the linear
address select a byte in a 4-Kbyte page, whose physical base
address is specified by the page-table entry.

■ 4-Mbyte Paging (Figure 1-3)—Bits 31–22 of the linear
address select an entry in a 4-Mbyte page directory in mem-
ory, whose physical base address is stored in CR3. Bits 21–0
of the linear address select a byte in a 4-Mbyte page in
memory, whose physical base address is specified by bits
31–22 of the page-directory entry. Bits 21–12 of the page-
directory entry must be cleared to 0.

Figure 1-4. Page-Directory Entry (PDE)

Available to Software AVL 11–9
Global G 8
Page Size PS 7
Dirty = 0 D 6
Accessed A 5
Page Cache Disable PCD 4
Page Writethrough PWT 3
User/Supervisor U/S 2
Write/Read W/R 1
Present (valid) P 0

8 7 6 5 4 3 2 1 031

P
C
D

U
/
S

W
/
R

G

9101112

A
V
L

P
S A

P
W
T

PPhysical Base Address 0

8 AMD-K5™ Processor x86 Architecture Extensions

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

Table 1-2. Page-Directory Entry (PDE) Fields

Bit Mnemonic Description Function

31–12 BASE
Physical Base
Address

For 4-Kbyte pages, bits 31–12 contain the physical base address of
a 4-Kbyte page table.

For 4-Mbyte pages, bits 31–22 contain the physical base address
of a 4-Mbyte page and bits 21–12 must be cleared to 0. (The pro-
cessor will generate a page fault if bits 21–12 are not cleared to 0.)

11–9 AVL Available to Software
Software may use this field to store any type of information. When
the page-directory entry is not present (P bit cleared), bits 31–1
become available to software.

8 G Global 0 = local, 1 = global.

7 PS Page Size 0 = 4-Kbyte, 1 = 4-Mbyte.

6 D Dirty

For 4-Kbyte pages, this bit is undefined and ignored. The proces-
sor does not change it.

0 = not written, 1 = written.

For 4-Mbyte pages, the processor sets this bit to 1 during a write
to the page that is mapped by this page-directory entry.

0 = not written, 1 = written.

5 A Accessed
The processor sets this bit to 1 during a read or write to any page
that is mapped by this page-directory entry.

0 = not read or written, 1 = read or written.

4 PCD Page Cache
Disable

Specifies cacheability for all pages mapped by this page-directory
entry. Whether a location in a mapped page is actually cached
also depends on several other factors.

0 = cacheable page, 1 = non-cacheable.

3 PWT Page Writethrough

Specifies writeback or writethrough cache protocol for all pages
mapped by this page-directory entry. Whether a location in a
mapped page is actually cached in a writeback or writethrough
state also depends on several other factors.

0 = writeback page, 1 = writethrough page.

2 U/S User/Supervisor 0 = user (any CPL), 1 = supervisor (CPL < 3).

1 W/R Write/Read 0 = read or execute, 1 = write, read, or execute.

0 P Present 0 = not valid, 1 = valid.

Control Register 4 (CR4) Extensions 9

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

Global Pages

The processor’s performance can sometimes be improved by
making some pages global to all tasks and procedures. This can
be done for both 4-Kbyte pages and 4-Mbyte pages.

The processor invalidates (flushes) both the 4-Kbyte TLB and
the 4-Mbyte TLB whenever CR3 is loaded with the base
address of the new task’s page directory. The processor loads
CR3 automatically during task switches, and the operating sys-
tem can load CR3 at any other time. Unnecessary invalidation
of certain TLB entries can be avoided by specifying those
entries as global (a global TLB entry references a global page).
This improves performance after TLB flushes. Global entries
remain in the TLB and need not be reloaded. For example,
entries may reference operating system code and data pages
that are always required. The processor operates faster if these
entries are retained across task switches and procedure calls.

To specify individual pages as global:

1. Set the Global Page Extension (GPE) bit in CR4.

2. (Optional) Set the Page Size Extension (PSE) bit in CR4.

3. Set the relevant Global (G) bit for that page:

For 4-Kbyte pages—Set the G bit in both the page-directory
entry (shown in Figure 1-4 and Table 1-2) and the page-
table entry (shown in Figure 1-5 and Table 1-3).

For 4-Mbyte pages—(Optional) After the PSE bit in CR4 is
set, set the G bit in the page-directory entry (shown in Fig-
ure 1-4 and Table 1-2).

4. Load CR3 with the base address of the page directory.

The INVLPG instruction clears both the V and G bits for the
referenced entry. To invalidate all entries, including global-
page entries, in both TLBs:

1. Clear the Global Page Extension (GPE) bit in CR4.

2. Load CR3 with the base address of another (or same) page
directory.

TLB Flushing In models 1, 2, and 3 of the AMD-K5 processors with stepping
level of 4 or greater, the processor flushes both the 4-Kbyte
TLB and the 4-Mbyte TLB (including global entries) whenever

10 AMD-K5™ Processor x86 Architecture Extensions

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

the GPE bit in CR4 is set or reset. Model 0 and models 1, 2, and
3 with stepping level less than 4 do not flush the TLBs when
the GPE bit is set or reset.

It is not necessary to load CR3 with the base address of the
page directory in order to flush the TLBs on models 1, 2, and 3
of the AMD-K5 processors with stepping level of 4 or greater.

Figure 1-5. Page-Table Entry (PTE)

Available to Software AVL 11–9
Global G 8
Page Size = 0 PS 7
Dirty D 6
Accessed A 5
Page Cache Disable PCD 4
Page Writethrough PWT 3
User/Supervisor U/S 2
Write/Read W/R 1
Present (valid) P 0

8 7 6 5 4 3 2 1 031

P
C
D

U
/
S

W
/
R

G

9101112

A
V
L

D A
P
W
T

PPhysical Base Address 0

Control Register 4 (CR4) Extensions 11

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

Table 1-3. Page-Table Entry (PTE) Fields

Bit Mnemonic Description Function

31–12 BASE Physical Base
Address The physical base address of a 4-Kbyte page.

11–9 AVL Available to Soft-
ware

Software may use the field to store any type of information.
When the page-table entry is not present (P bit cleared), bits 31–1
become available to software.

8 G Global 0 = local, 1 = global.

7 PS Page Size
This bit is ignored in page-table entries, although clearing it to 0
preserves consistent usage of this bit between page-table and
page-directory entries.

6 D Dirty
The processor sets this bit to 1 during a write to the page that is
mapped by this page-table entry.

0 = not written, 1 = written.

5 A Accessed
The processor sets this bit to 1 during a read or write to any page
that is mapped by this page-table entry.

0 = not read or written, 1 = read or written.

4 PCD Page Cache Disable

Specifies cacheability for all locations in the page mapped by this
page-table entry. Whether a location is actually cached also
depends on several other factors.

0 = cacheable page, 1 = non-cacheable.

3 PWT Page Writethrough

Specifies writeback or writethrough cache protocol for all loca-
tions in the page mapped by this page-table entry. Whether a
location is actually cached in a writeback or writethrough state
also depends on several other factors.

0 = writeback, 1 = writethrough.

2 U/S User/Supervisor 0 = user (any CPL), 1 = supervisor (CPL < 3).

1 W/R Write/Read 0 = read or execute, 1 = write, read, or execute.

0 P Present 0 = not valid, 1 = valid.

12 AMD-K5™ Processor x86 Architecture Extensions

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

Virtual-8086 Mode Extensions (VME)

The Virtual-8086 Mode Extensions (VME) bit in CR4 (bit 0)
enable performance enhancements for 8086 programs running
as protected tasks in Virtual-8086 mode. These extensions
include:

■ Virtualizing maskable external interrupt control and notifi-
cation via the VIF and VIP bits in EFLAGS

■ Selectively intercepting software interrupts (INTn instruc-
tions) via the Interrupt Redirection Bitmap (IRB) in the
Task State Segment (TSS)

Interrupt Redirection
in Virtual-8086 Mode
Without VME
Extensions

8086 programs expect to have full access to the interrupt flag
(IF) in the EFLAGS register, which enables maskable external
interrupts via the INTR signal. When 8086 programs run in Vir-
tual-8086 mode on a 386 or 486 processor, they run as pro-
tected tasks and access to the IF flag must be controlled by the
operating system on a task-by-task basis to prevent corruption
of system resources.

Without the VME extensions available on the AMD-K5 proces-
sor, the operating system controls Virtual-8086 mode access to
the IF flag by trapping instructions that can read or write this
flag. These instructions include STI, CLI, PUSHF, POPF, INTn,
and IRET. This method prevents changes to the real IF when
the I/O privilege level (IOPL) in EFLAGS is less than 3, the
privilege level at which all Virtual-8086 tasks run. The operat-
ing system maintains an image of the IF flag for each Virtual-
8086 program by emulating the instructions that read or write
IF. When an external maskable interrupt occurs, the operating
system checks the state of the IF image for the current Virtual-
8086 program to determine whether the program is allowing
interrupts. If the program has disabled interrupts, the operat-
ing system saves the interrupt information until the program
attempts to re-enable interrupts.

The overhead for trapping and emulating the instructions that
enable and disable interrupts, and the maintenance of virtual
interrupt flags for each Virtual-8086 program, can degrade the
processor’s performance. This performance can be regained by
running Virtual-8086 programs with IOPL set to 3, thus allow-
ing changes to the real IF flag from any privilege level, but
with a loss in protection.

Control Register 4 (CR4) Extensions 13

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

In addition to these performance problems caused by virtual-
ization of the IF flag in Virtual-8086 mode, software interrupts
(those caused by INTn instructions that vector through inter-
rupt gates) cannot be masked by the IF flag or virtual copies of
the IF flag, these flags only affect hardware interrupts. Soft-
ware interrupts in Virtual-8086 mode are normally directed to
the Real mode interrupt vector table (IVT), but it may be
desirable to redirect interrupts for certain vectors to the Pro-
tected mode interrupt descriptor table (IDT).

The processor’s Virtual-8086 mode extensions support both of
these cases—hardware (external) interrupts and software
interrupts—with mechanisms that preserve high performance
without compromising protection. Virtualization of hardware
interrupts is supported via the Virtual Interrupt Flag (VIF)
and Virtual Interrupt Pending (VIP) flag in the EFLAGS regis-
ter. Redirection of software interrupts is supported with the
Interrupt Redirection Bitmap (IRB) in the TSS of each Virtual-
8086 program.

Hardware Interrupts
and the VIF and VIP
Extensions

When VME extensions are enabled, the IF-modifying instruc-
tions that are normally trapped by the operating system are
allowed to execute, but they write and read the VIF bit rather
than the IF bit in EFLAGS. This leaves maskable interrupts
enabled for detection by the operating system. It also indicates
to the operating system whether the Virtual-8086 program is
able to or expecting to receive interrupts.

When an external interrupt occurs, the processor switches
from the Virtual-8086 program to the operating system, in the
same manner as on a 386 or 486 processor. If the operating sys-
tem determines that the interrupt is for the Virtual-8086 pro-
gram, it checks the state of the VIF bit in the program’s
EFLAGS image on the stack. If VIF has been set by the proces-
sor (during an attempt by the program to set the IF bit), the
operating system permits access to the appropriate Virtual-
8086 handler via the interrupt vector table (IVT). If VIF has
been cleared, the operating system holds the interrupt pend-
ing. The operating system can do this by saving appropriate
information (such as the interrupt vector), setting the pro-
gram's VIP flag in the EFLAGS image on the stack, and return-
ing to the interrupted program. When the program
subsequently attempts to set IF, the set VIP flag causes the
processor to inhibit the instruction and generate a general-

14 AMD-K5™ Processor x86 Architecture Extensions

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

protection exception with error code zero, thereby notifying
the operating system that the program is now prepared to
accept the interrupt.

Thus, when VME extensions are enabled, the VIF and VIP bits
are set and cleared as follows:

■ VIF—This bit is controlled by the processor and used by the
operating system to determine whether an external
maskable interrupt should be passed on to the program or
held pending. VIF is set and cleared for instructions that
can modify IF, and it is cleared during software interrupts
through interrupt gates. The original IF value is preserved
in the EFLAGS image on the stack.

■ VIP—This bit is set and cleared by the operating system via
the EFLAGS image on the stack. It is set when an interrupt
occurs for a Virtual-8086 program who’s VIF bit is cleared.
The bit is checked by the processor when the program sub-
sequently attempts to set VIF.

Figure 1-6 and Table 1-4 show the VIF and VIP bits in the
EFLAGS register. The VME extensions support conventional
emulation methods for passing interrupts to Virtual-8086 pro-
grams, but they make it possible for the operating system to
avoid time-consuming emulation of most instructions that
write or read the IF.

The VIF and IF flags only affect the way the operating system
deals with hardware interrupts (the INTR signal). Software
interrupts are handled like machine-generated exceptions and
cannot be masked by real or virtual copies of IF (see “Software
Interrupts and the Interrupt Redirection Bitmap (IRB) Exten-
sion” on page 20). The VIF and VIP flags only ease the soft-
ware overhead associated with managing interrupts so that
virtual copies of the IF flag do not have to be maintained by
the operating system. Instead, each task’s TSS holds its own
copy of these flags in its EFLAGS image.

Control Register 4 (CR4) Extensions 15

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

Figure 1-6. EFLAGS Register

Table 1-4. Virtual-Interrupt Additions to EFLAGS Register

Bit Mnemonic Description Function

20 VIP Virtual Interrupt Pend-
ing

Set by the operating system (via the EFLAGS image on the stack)
when an external maskable interrupt (INTR) occurs for a Virtual-
8086 program who’s VIF bit is cleared. The bit is checked by the
processor when the program subsequently attempts to set VIF.

19 VIF Virtual Interrupt Flag

When the VME bit in CR4 is set, the VIF bit is modified by the
processor when a Virtual-8086 program running at less privilege
than the IOPL attempts to modify the IF bit. The VIF bit is used by
the operating system to determine whether a maskable interrupt
should be passed on to the program or held pending.

ID Flag ID 21
Virtual Interrupt Pending VIP 20
Virtual Interrupt Flag VIF 19
Alignment Check AC 18
Virtual-8086 Mode VM 17
Resume Flag RF 16
Nested Task NT 14
I/O Privilege Level IOPL 13–12
Overflow Flag OF 11
Direction Flag DF 10
Interrupt Flag IF 9
Trap Flag TF 8
Sign Flag SF 7
Zero Flag ZF 6
Auxiliary Flag AF 4
Parity Flag PF 2
Carry Flag CF 0

9 8 7 6 5 4 3 2 1 0101112131415161718192021

I
O
P
L

31 30 29 28 27 26 25 24 23 22

A
F

P
F

Z
F

S
F

I
F

D
F

T
F

O
F

N
T

R
F

V
M

A
C

V
I
F

V
I
P

I
D

C
F

Reserved

16 AMD-K5™ Processor x86 Architecture Extensions

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

Table 1-5A through Table 1-5E shows the effects, in various
x86-processor modes, of instructions that read or write the IF
and VIF flag. The column headings in this table include the fol-
lowing values:

■ PE—Protection Enable bit in CR0 (bit 0)

■ VM—Virtual-8086 Mode bit in EFLAGS (bit 17)

■ VME—Virtual Mode Extensions bit in CR4 (bit 0)

■ PVI—Protected-mode Virtual Interrupts bit in CR4 (bit 1)

■ IOPL—I/O Privilege Level bits in EFLAGS (bits 13–12)

■ Handler CPL—Code Privilege Level of the interrupt han-
dler

■ GP(0)—General-protection exception, with error code = 0

■ IF—Interrupt Flag bit in EFLAGS (bit 9)

■ VIF—Virtual Interrupt Flag bit in EFLAGS (bit 19)

Table 1-5A. Instructions that Modify the IF or VIF Flags—Real Mode

TYPE PE VM VME PVI IOPL GP(0) IF VIF

CLI 0 0 0 0 — No IF ← 0 —

STI 0 0 0 0 — No IF ← 1 —

PUSHF 0 0 0 0 — No Pushed —

POPF 0 0 0 0 — No Popped —

IRET 0 0 0 0 — No Popped —
Notes:

— Not applicable.

Control Register 4 (CR4) Extensions 17

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

Table 1-5B. Instructions that Modify the IF or VIF Flags—Protected Mode

TYPE PE VM VME PVI IOPL Handler
 CPL GP(0) IF VIF

CLI 1 0 — 0 ≥ CPL — No IF ← 0 —

CLI 1 0 — 0 < CPL — Yes — —

STI 1 0 — 0 ≥ CPL — No IF ← 1 —

STI 1 0 — 0 < CPL — Yes — —

PUSHF 1 0 — 0 ≥ CPL — No Pushed —

PUSHF 1 0 — 0 < CPL — No Pushed —

PUSHFD 1 0 — 0 ≥ CPL — No Pushed Pushed

PUSHFD 1 0 — 0 < CPL — No Pushed Pushed

POPF 1 0 — 0 ≥ CPL — No Popped —

POPF 1 0 — 0 < CPL — No Not Popped —

POPFD 1 0 — 0 ≥ CPL — No Popped Not Popped

POPFD 1 0 — 0 < CPL — No Not Popped Not Popped

IRET 1 0 — 0 — = 0 No Popped —

IRET 1 0 — 0 ≥ CPL > 0 No1 Popped —

IRET 1 0 — 0 < CPL > 0 No1 Not Popped —

IRETD 1 0 — 0 — = 0 No Popped Popped

IRETD 1 0 — 0 ≥ CPL > 0 No1 Popped Not Popped

IRETD 1 0 — 0 < CPL > 0 No1 Not Popped Not Popped

Notes:
1. GP(0) if the CPL of the task executing IRETD is greater than the CPL of the task returned to.
— Not applicable.

18 AMD-K5™ Processor x86 Architecture Extensions

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

Table 1-5C. Instructions that Modify the IF or VIF Flags—Virtual-8086 Mode

TYPE PE VM VME PVI IOPL GP(0) IF VIF

CLI 1 1 0 — 3 No IF ← 0 No Change

CLI 1 1 0 — < 3 Yes — —

STI 1 1 0 — 3 No IF ← 1 No Change

STI 1 1 0 — < 3 Yes — —

PUSHF 1 1 0 — 3 No Pushed —

PUSHF 1 1 0 — < 3 Yes — —

PUSHFD 1 1 0 — 3 No Pushed Pushed

PUSHFD 1 1 0 — < 3 Yes — —

POPF 1 1 0 — 3 No Popped —

POPF 1 1 0 — < 3 Yes — —

POPFD 1 1 0 — 3 No Popped Not Popped

POPFD 1 1 0 — < 3 Yes — —

IRETD2 1 1 0 — — No Popped Popped

Notes:
1. All Virtual-8086 mode tasks run at CPL = 3.
2. All protected virtual interrupt handlers run at CPL = 0.
— Not applicable.

Control Register 4 (CR4) Extensions 19

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

Table 1-5D. Instructions that Modify the IF or VIF Flags—Virtual-8086 Mode Interrupt
Extensions (VME)1

TYPE PE VM VME PVI IOPL GP(0) IF VIF

CLI 1 1 1 — 3 No IF ← 0 No Change

CLI 1 1 1 — < 3 No No Change VIF ← 0

STI 1 1 1 — 3 No IF ← 1 No Change

STI 1 1 1 — < 3 No3 No Change VIF ← 1

PUSHF 1 1 1 — 3 No Pushed Not Pushed

PUSHF 1 1 1 — < 3 No Not Pushed Pushed into IF

PUSHFD 1 1 1 — 3 No Pushed Pushed

PUSHFD 1 1 1 — < 3 Yes — —

POPF 1 1 1 — 3 No Popped Not Popped

POPF 1 1 1 — < 3 No Not Popped Popped from IF

POPFD 1 1 1 — 3 No Popped Not Popped

POPFD 1 1 1 — < 3 Yes — —

IRET from
V86 Mode

1 1 1 — 3 No Popped Not Popped

IRET from
V86 Mode

1 1 1 — < 3 No3 Not Popped Popped from IF

IRETD from
V86 Mode

1 1 1 — 3 No Popped Not Popped

IRETD from
V86 Mode

1 1 1 — < 3 Yes — —

IRETD from
Protected Mode2 1 1 1 — — No3 Popped Popped

Notes:
1. All Virtual-8086 mode tasks run at CPL = 3.
2. All protected virtual interrupt handlers run at CPL = 0.
3. GP(0) if an attempt is made to set VIF when VIP = 1.
— Not applicable.

20 AMD-K5™ Processor x86 Architecture Extensions

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

Software Interrupts
and the Interrupt
Redirection Bitmap
(IRB) Extension

In Virtual-8086 mode, software interrupts (INTn exceptions
that vector through interrupt gates) are trapped by the operat-
ing system for emulation, because they would otherwise clear
the real IF. When VME extensions are enabled, these INTn
instructions are allowed to execute normally, vectoring
directly to a Virtual-8086 service routine via the Virtual-8086
interrupt vector table (IVT) at address 0 of the task address
space. However, it may still be desirable for security or perfor-
mance reasons to intercept INTn instructions on a vector-
specific basis to allow servicing by Protected-mode routines
accessed through the interrupt descriptor table (IDT). This is
accomplished by an Interrupt Redirection Bitmap (IRB) in the
TSS, which is created by the operating system in a manner sim-
ilar to the IO Permission Bitmap (IOPB) in the TSS.

Figure 1-7 shows the format of the TSS, with the Interrupt
Redirection Bitmap near the top. The IRB contains 256 bits,
one for each possible software-interrupt vector. The most-

Table 1-5E. Instructions that Modify the IF or VIF Flags—Protected Mode Virtual
Interrupt Extensions (PVI)1

TYPE PE VM VME PVI IOPL GP(0) IF VIF

CLI 1 0 — 1 3 No IF ← 0 No Change

CLI 1 0 — 1 < 3 No No Change VIF ← 0

STI 1 0 — 1 3 No IF ← 1 No Change

STI 1 0 — 1 < 3 No3 No Change VIF ← 1

PUSHF 1 0 — 1 3 No Pushed Not Pushed

PUSHF 1 0 — 1 < 3 No Pushed Not Pushed

PUSHFD 1 0 — 1 3 No Pushed Pushed

PUSHFD 1 0 — 1 < 3 No Pushed Pushed

POPF 1 0 — 1 3 No Popped Not Popped

POPF 1 0 — 1 < 3 No Not Popped Not Popped

POPFD 1 0 — 1 3 No Popped Not Popped

POPFD 1 0 — 1 < 3 No Not Popped Not Popped

IRETD2 1 0 — 1 — No3 Popped Popped

Notes:
1. All Protected mode virtual interrupt tasks run at CPL = 3.
2. All protected mode virtual interrupt handlers run at CPL = 0.
3. GP(0) if an attempt is made to set VIF when VIP = 1.
— Not applicable.

Control Register 4 (CR4) Extensions 21

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

significant bit of the IRB is located immediately below the
base of the IOPB. This bit controls interrupt vector 255. The
least-significant bit of the IRB controls interrupt vector 0.

The bits in the IRB work as follows:

■ Set—If set to 1, the INTn instruction behaves as if the VME
extensions are not enabled. The interrupt vectors to a Pro-
tected-mode routine if IOPL = 3, or it causes a general-pro-
tection exception with error code zero if IOPL<3.

■ Cleared—If cleared to 0, the INTn instruction vectors
directly to the corresponding Virtual-8086 service routine
via the Virtual-8086 program’s IVT.

Only software interrupts can be redirected via the IRB to a
Real mode IVT—hardware interrupts cannot. Hardware inter-
rupts are asynchronous events and do not belong to any cur-
rent virtual task. The processor thus has no way of deciding
which IVT (for which Virtual-8086 program) to direct a hard-
ware interrupt to. Because of this, hardware interrupts always
require operating system intervention. The VIF and VIP bits
described in “Hardware Interrupts and the VIF and VIP Exten-
sions” on page 13 are provided to assist the operating system
in this intervention.

22 AMD-K5™ Processor x86 Architecture Extensions

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

Figure 1-7. Task State Segment (TSS)

31

Interrupt Redirection Bitmap (IRB)
(eight 32-bit locations)

0

I/O Permission Bitmap (IOPB)
(up to 8 Kbyte)

Operating System
Data Structure

Base Address of IOPB

LDT Selector0000h

0000h

0000h
0000h

0000h

0000h

0000h

GS

FS

DS
SS

CS

ES

EDI

ESI
EBP

ESP

EBX

EDX
ECX

EAX

CR3

EFLAGS

EIP

0000h

0000h

0000h

0000h

SS2

SS1

SS0

Link (Prior TSS Selector)
ESP0

ESP1

ESP2

TSS Limit
 from TR

64h

0

T0000h

Control Register 4 (CR4) Extensions 23

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

Table 1-6 compares the behavior of hardware and software
interrupts in various x86-processor operating modes. It also
shows which interrupt table is accessed: the Protected-mode
IDT or the Real- and Virtual-8086-mode IVT. The column head-
ings in this table include:

■ PE—Protection Enable bit in CR0 (bit 0)

■ VM—Virtual-8086 Mode bit in EFLAGS (bit 17)

■ VME—Virtual Mode Extensions bit in CR4 (bit 0)

■ PVI—Protected-Mode Virtual Interrupts bit in CR4 (bit 1)

■ IOPL—I/O Privilege Level bits in EFLAGS (bits 13–12)

■ IRB—Interrupt Redirection Bit for a task, from the Inter-
rupt Redirection Bitmap (IRB) in the tasks TSS

■ GP(0)—General-protection exception, with error code = 0

■ IDT—Protected-Mode Interrupt Descriptor Table

■ IVT—Real- and Virtual-8086 Mode Interrupt Vector Table

Table 1-6. Interrupt Behavior and Interrupt-Table Access

Mode Interrupt
Type PE VM VME PVI IOPL IRB GP(0) IDT IVT

Real mode
Software 0 0 0 — 0 — — — ✓

Hardware 0 0 0 — 0 — — — ✓

Protected mode
Software 1 0 0 — — — — ✓ —

Hardware 1 0 0 — — — — ✓ —

Virtual-8086
mode1

Software 1 1 0 — = 3 — No ✓ —

Software 1 1 0 — < 3 — Yes ✓ —

Hardware 1 1 0 — — — No ✓ —

Virtual-8086
Mode Exten-
sions (VME)1

Software 1 1 1 0 — 0 No — ✓

Software 1 1 1 0 = 3 1 No ✓ —

Software 1 1 1 0 < 3 1 Yes ✓ —

Hardware 1 1 1 0 — — No ✓ —

Protected Vir-
tual Extensions
(PVI)

Software 1 0 1 1 — — No ✓ —

Hardware 1 0 1 1 — — No ✓ —

Notes:
1. All Virtual-8086 tasks run at CPL = 3.
— Not applicable.

24 AMD-K5™ Processor x86 Architecture Extensions

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

Protected Virtual Interrupt (PVI) Extensions

The Protected Virtual Interrupts (PVI) bit in CR4 enables sup-
port for interrupt virtualization in Protected mode. In this vir-
tualization, the processor maintains program-specific VIF and
VIP flags in a manner similar to those in Virtual-8086 Mode
Extensions (VME). When a program is executed at CPL = 3, it
can set and clear its copy of the VIF flag without causing
general-protection exceptions.

The only differences between the VME and PVI extensions are
that, in PVI, selective INTn interception using the Interrupt
Redirection Bitmap in the TSS does not apply, and only the STI
and CLI instructions are affected by the extension.

Table 1-5A through Table 1-5E and Table 1-6 show, among
other things, the behavior of hardware and software inter-
rupts, and instructions that affect interrupts, in Protected
mode with the PVI extensions enabled.

Implementation of Write Allocate

The AMD-K5 processor implements write allocate by providing
a global write allocate enable bit, three range-protection
enable bits, and two memory range registers. The global write
allocate enable bit is accessed using the Hardware Configura-
tion Register (HWCR). The memory range registers and range
enable bits are programmed by read/write model-specific reg-
ister (MSR) instructions.

For details regarding programming write allocate in the K86-
family processors, see the application note “Implementation of
Write Allocate in the K86 Processors,” order# 21326.

Model-Specific Registers (MSRs) 25

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

Model-Specific Registers (MSRs)

The processor supports model-specific registers (MSRs) that
can be accessed with the RDMSR and WRMSR instructions
when CPL = 0. The following index values in the ECX register
access specific MSRs:

■ 00h: Machine-Check Address Register (MCAR)
■ 01h: Machine-Check Type Register (MCTR)
■ 10h: Time Stamp Counter (TSC)
■ 82h: Array Access Register (AAR)
■ 83h: Hardware Configuration Register (HWCR)
■ 85h: Write Allocate Top-of-Memory and Control Register

(WATMCR)
■ 86h: Write Allocate Programmable Memory Range Register

(WAPMRR)

Machine-Check Address Register (MCAR)

The processor latches the address of the current bus cycle in
its 64-bit Machine-Check Address Register (MCAR) when a
bus-cycle error occurs. These errors are indicated either by (a)
system logic asserting BUSCHK, or (b) the processor asserting
PCHK while system logic asserts PEN.

The MCAR can be read with the RDMSR instruction when the
ECX register contains the value 00h. Figure 1-8 shows the for-
mat of the MCAR register. The contents of the register can be
read with the RDMSR instruction.

If system software has set the MCE bit in CR4 before the bus-
cycle error, the processor also generates a machine-check
exception as described on page 4.

Figure 1-8. Machine-Check Address Register (MCAR)

063

Physical Address of Last Bus Cycle that Failed

26 AMD-K5™ Processor x86 Architecture Extensions

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

Machine-Check Type Register (MCTR)

The processor latches the cycle definition and other informa-
tion about the current bus cycle in its 64-bit Machine-Check
Type Register (MTAR) at the same times that the Machine-
Check Address Register (MCAR) latches the cycle address:
when a bus-cycle error occurs. These errors are indicated
either by (a) system logic asserting BUSCHK, or (b) the proces-
sor asserting PCHK while system logic asserts PEN.

The MCTR can be read with the RDMSR instruction when the
ECX register contains the value 01h. Figure 1-9 and Table 1-7
show the formats of the MCTR register. The contents of the
register can be read with the RDMSR instruction. The proces-
sor clears the CHK bit (bit 0) in MCTR when the register is
read with the RDMSR instruction.

If system software has set the MCE bit in CR4 before the bus-
cycle error, the processor also generates a machine-check
exception as described on page 4.

Figure 1-9. Machine-Check Type Register (MCTR)

Locked Cycle LOCK 4
Memory or I/O Cycle M/IO 3
Data or Code Cycle D/C 2
Write or Read Cycle W/R 1
Valid Machine-Check Data CHK 0

5 4 3 2 1 063

C
H
K

D
/
C

W
/
R

L
O
C
K

M
/
I
O

Reserved

Model-Specific Registers (MSRs) 27

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

Time Stamp Counter (TSC)

With each processor clock cycle, the processor increments a 64-
bit time stamp counter (TSC) model-specific register. The
counter can be written or read using the WRMSR or RDMSR
instructions when the ECX register contains the value 10h and
CPL = 0. The counter can also be read using the RDTSC
instruction (see page 33) but the required privilege level for
this instruction is determined by the Time Stamp Disable
(TSD) bit in CR4. With any of these instructions, the EDX and
EAX registers hold the upper and lower double-words (dwords)
of the 64-bit value to be written to or read from the TSC, as
follows:

■ EDX—Upper 32 bits of TSC

■ EAX—Lower 32 bits of TSC

The TSC can be loaded with any arbitrary value.

Array Access Register (AAR)

The Array Access Register (AAR) contains pointers for testing
the tag and data arrays for the instruction cache, data cache, 4-
Kbyte TLB, and 4-Mbyte TLB. The AAR can be written or read
with the WRMSR or RDMSR instruction when the ECX regis-
ter contains the value 82h.

For details on the AAR, see “Cache and TLB Testing” on page
75.

Table 1-7. Machine-Check Type Register (MCTR) Fields

Bit Mnemonic Description Function

4 LOCK Locked Cycle Set to 1 if the processor was asserting LOCK during the bus
cycle.

3 M/IO Memory or I/O 1 = memory cycle, 0 = I/O cycle.

2 D/C Data or Code 1 = data cycle, 0 = code cycle.

1 W/R Write or Read 1 = write cycle, 0 = read cycle.

0 CHK
Valid Machine-Check
Data

The processor sets the CHK bit to 1 when both the MCTR and
MCAR registers contain valid information. The processor clears
the CHK bit to 0 when software reads the MCTR with the
RDMSR instruction.

28 AMD-K5™ Processor x86 Architecture Extensions

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

Hardware Configuration Register (HWCR)

The Hardware Configuration Register (HWCR) contains con-
figuration bits that control miscellaneous debugging functions.
The HWCR can be written or read with the WRMSR or
RDMSR instruction when the ECX register contains the value
83h.

For details on the HWCR, see “Hardware Configuration Regis-
ter (HWCR)” on page 71.

Write Allocate Top-of-Memory and Control Register (WATMCR)

The Write Allocate Top-of-Memory and Control Register
(WATMCR) contains bits that enable write allocate range con-
trols and a field to specify the top-of-memory address limit for
write allocate operations. The WATMCR can be written or
read with the WRMSR or RDMSR instruction when the ECX
register contains the value 85h.

Write Allocate Programmable Memory Range Register (WAPMRR)

The Write Allocate Programmable Memory Range Register
(WAPMRR) contains fields that specify the top and bottom
addresses of the programmable memory range. The WAPMRR
can be written or read with the WRMSR or RDMSR instruction
when the ECX register contains the value 86h.

New Instructions

In addition to supporting all the 486 processor instructions, the
AMD-K5 processor implements the following instructions:

■ CPUID
■ CMPXCHG8B
■ MOV to and from CR4
■ RDTSC
■ RDMSR
■ WRMSR
■ RSM

■ Illegal instruction (Reserved opcode)

New Instructions 29

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

CPUID

mnemonic opcode description

CPUID 0F A2h Identify processor

Privilege: Any level
Registers Affected: EAX, EBX, ECX, EDX
Flags Affected: none
Exceptions Generated: Real, Virtual-8086 mode—none

Protected mode—none

The CPUID instruction identifies the type of processor and the features it supports.
A 0 or 1 value written to the EAX register specifies what information will be
returned by the instruction.

The processor implements the ID flag (bit 21) in the EFLAGS register. By writing and
reading this bit, software can verify that the processor will execute the CPUID
instruction.

For detailed instructions on processor and feature identification see the AMD Proces-
sor Recognition application note, order# 20734.

Table 1-8 outlines the AMD-K5 processor family codes and model codes with the CPU
clock frequencies (MHz), bus frequencies (MHz), and P-Rating strings (“PRxxx”).

Table 1-8. CPU Clock Frequencies, Bus Frequencies, and P-Rating Strings

Family Code Model Code CPU Frequency (MHz) CPU Bus Frequency (MHz) P-Rating String (“PRxxx”)1

5

0

75 50 PR75

90 60 PR90

100 66 PR100

1
90 60 PR120

100 66 PR133

2 116.7 66 PR166

3 133 66 PR200
Notes:

1. The CPUID instruction does not return a P-Rating string.

— This table does not constitute product announcements. Instead, the information in the table represents possible product offerings.
AMD will announce actual products based on availability and market demand.

30 AMD-K5™ Processor x86 Architecture Extensions

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

The list below prioritizes the recommended BIOS CPU ID strings. The primary
requirement is that if the CPU clock frequency is to be displayed the P-rating must
also be displayed.

Recommended:

“AMD-K5-PRxxx” No clock or bus frequency information is displayed.

OR

“AMD-K5-PRxxx”
“yyy MHz”
“zzz Mhz”

“PRxxx” indicates the P-Rating for the installed K86™ processor. “yyy MHz” indicates
the clock frequency of the processor. “zzz Mhz” indicates the bus frequency of the
processor. Display of the bus frequency is encouraged, but not required.

Acceptable:

“AMD-K5”
The default is recommended if the clock frequency detected is not in the P-Rating
table. The actual frequency should not be displayed anywhere in the boot-up dis-
play.

New Instructions 31

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

CMPXCHG8B

mnemonic opcode description

CMPXCHG8B r/m64 0F C7h Compare and exchange 8-byte operand

Privilege: Any level
Registers Affected: EAX, EBX, ECX, EDX
Flags Affected: ZF
Exceptions Generated: Real, Virtual-8086, Protected mode—GP(0). Invalid opcode if destination is a register.

Virtual-8086 mode—Page fault

The CMPXCHG8B instruction is an 8-byte version of the 4-byte CMPXCHG instruc-
tion supported by the 486 processor. CMPXCHG8B compares a value from memory
with a value in the EDX and EAX register, as follows:

■ EDX—Upper 32 bits of compare value

■ EAX—Lower 32 bits of compare value

If the memory value matches the value in EDX and EAX, the ZF flag is set to 1 and
the 8-byte value in ECX and EBX is written to the memory location, as follows:

■ ECX—Upper 32 bits of exchange value

■ EBX—Lower 32 bits of exchange value

32 AMD-K5™ Processor x86 Architecture Extensions

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

MOV to and from CR4

mnemonic opcode description

MOV CR4,r32 0F 22h Move to CR4 from register
MOV r32,CR4 0F 20h Move to register from CR4

Privilege: CPL = 0
Registers Affected: CR4, 32-bit general-purpose register
Flags Affected: OF, SF, ZF, AF, PF, and CF are undefined
Exceptions Generated: Real mode—none

Virtual-8086 mode—GP(0)
Protected mode—GP(0) if CPL not = 0

These instructions read and write control register 4 (CR4).

New Instructions 33

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

RDTSC

mnemonic opcode description

RDTSC 0F 31h Read time stamp counter

Privilege: Selectable by TSD bit in CR4
Registers Affected: EAX, EDX
Flags Affected: none
Exceptions Generated: Real—none

Virtual-8086 mode—Invalid Opcode
Protected mode—GP (0) if CPL not = 0 when CR4.TSD=1

The AMD-K5 processor’s 64-bit time stamp counter (TSC) increments on each proces-
sor clock. In Real or Protected mode, the counter can be read with the RDMSR
instruction and written with the WRMSR instruction when CPL = 0. However, in Pro-
tected mode the RDTSC instruction can be used to read the counter at privilege lev-
els higher than CPL = 0.

The required privilege level for using the RDTSC instruction is determined by the
Time Stamp Disable (TSD) bit in CR4, as follows:

■ CPL = 0—Set the TSD bit in CR4 to 1

■ Any CPL—Clear the TSD bit in CR4 to 0

The RDTSC instruction reads the counter value into the EDX and EAX registers as
follows:

■ EDX—Upper 32 bits of TSC

■ EAX—Lower 32 bits of TSC

The following example shows how the RDTSC instruction can be used. After this
code is executed, EAX and EDX contain the time required to execute the RDTSC
instruction.

mov ecx,10h ;Time Stamp Counter Access via MSRs
mov eax,00000000h ;Initialize the Counter to zero
db 0Fh, 30h ;WRMSR
db 0Fh, 31h ;RDTSC
db 0Fh, 31h ;RDTSC

34 AMD-K5™ Processor x86 Architecture Extensions

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

RDMSR and WRMSR

mnemonic opcode description

RDMSR 0F 32h Read model-specific register (MSR)
WRMSR 0F 30h Write model-specific register (MSR)

Privilege: CPL=0
Registers Affected: EAX, ECX, EDX
Flags Affected: none
Exceptions Generated: Real—GP(0) for unimplemented MSR address

Virtual-8086 mode—GP(0)
Protected mode—GP(0) if CPL not = 0
Protected mode—GP(0) for unimplemented MSR address

The RDMSR or WRMSR instructions can be used in Real or Protected mode to access
several 64-bit, model-specific registers (MSRs). These registers are addressed by the
value in ECX, as follows:

■ 00h: Machine-Check Address Register (MCAR). This may contain the physical
address of the last bus cycle for which the BUSCHK or PCHK signal was asserted.
For details, see “Machine-Check Address Register (MCAR)” on page 25.

■ 01h: Machine-Check Type Register (MCTR). This contains the cycle definition of
the last bus cycle for which the BUSCHK or PCHK signal was asserted. For
details, see “Machine-Check Type Register (MCTR)” on page 26. The processor
clears the CHK bit (bit 0) in MCTR when the register is read with the RDMSR
instruction.

■ 10h: Time Stamp Counter (TSC). This contains a time value. The TSC can be ini-
tialized to any value with the WRMSR instruction, and it can be read with either
the RDMSR or RDTSC instruction. For details, see “Time Stamp Counter (TSC)”
on page 27.

■ 82h: Array Access Register (AAR). This contains an array pointer and test data
for testing the processor’s cache and TLB arrays. For details on the AAR, see
“Cache and TLB Testing” on page 75.

■ 83h: Hardware Configuration Register (HWCR). This contains configuration bits
that control miscellaneous debugging functions. For details, see “Hardware Con-
figuration Register (HWCR)” on page 71.

New Instructions 35

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

■ 85h: Write Allocate Top-of-Memory and Control Register (WATMCR). This regis-
ter contains bits that enable write allocate range controls and a field to specify
the top-of-memory address limit for write allocate operations. For details on the
WATMCR, see “Implementation of Write Allocate in the AMD-K5 Processor” in
this amendment.

■ 86h: Write Allocate Programmable Memory Range Register (WAPMRR). This reg-
ister contains fields that specify the top and bottom addresses of the programma-
ble memory range. For details on the WAPMRR, see “Implementation of Write
Allocate in the AMD-K5 Processor” in this amendment.

The above value in ECX identifies the register to be read or written. The EDX and
EAX registers contain the MSR values to be read or written, as follows:

■ EDX—Upper 32 bits of MSR. For the AAR, this contains the array pointer and (in
contrast to all other MSRs) its contents are not altered by a RDMSR instruction.

■ EAX—Lower 32 bits of MSR. For the AAR, this contains the data to be read/writ-
ten.

All MSRs are 64 bits wide. However, the upper 32 bits of the AAR are write-only and
are not returned on a read. EDX remains unaltered, making it more convenient to
maintain the array pointer.

If an attempt is made to execute either the RDMSR or WRMSR instruction when
CPL is greater than 0, or to access an undefined model-specific register, the proces-
sor generates a general-protection exception with error code zero.

Model-specific registers, as their name implies, may or may not be implemented by
later models of the AMD-K5 processor.

36 AMD-K5™ Processor x86 Architecture Extensions

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

RSM

mnemonic opcode description

RSM 0F AAh Resume execution (exit System Management Mode)

Privilege: CPL = 0
Registers Affected: CS, DS, ES, FS, GS, SS, EIP, EFLAGS, LDTR,

CR3, EAX, EBX, ECX, EDX, ESP, EBP, EDI, ESI
Flags Affected: none
Exceptions Generated: Real, Virtual-8086 mode—Invalid opcode if not in SMM

Protected mode—Invalid opcode if not in SMM
Protected mode—GP(0) if CPL not = 0

The RSM instruction should be the last instruction in any System Management Mode
(SMM) service routine. It restores the processor state that was saved when the SMI
interrupt was asserted. This instruction is only valid when the processor is in SMM. It
generates an invalid opcode exception at all other times.

The processor enters the Shutdown state if any of the following illegal conditions are
encountered during the execution of the RSM instruction: the SMM base value is not
aligned on a 32-Kbyte boundary, or any reserved bit of CR4 set to 1, or the PG bit is
set while the PE is cleared in CR0, or the NW bit it set while the CD bit is cleared in
CR0.

New Instructions 37

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

Illegal Instruction (Reserved Opcode)

mnemonic opcode description

(none) 0F FFh Illegal instruction (reserved opcode)

Privilege: Any level
Registers Affected: none
Flags Affected: none
Exceptions Generated: Real, Virtual-8086 mode—Invalid opcode

Protected mode—Invalid opcode
Protected mode—Invalid opcode

This opcode always generates an invalid opcode exception. The opcode will not be
used in future AMD K86 processors.

38 AMD-K5™ Processor x86 Architecture Extensions

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

Code Optimization 39

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

2
Code Optimization for the
AMD-K5 Processor

This chapter provides information to assist fast execution and
details on dispatch and execution timing for x86 instructions.
Throughout the chapter, the terms clock and cycle refer to pro-
cessor clock cycles, not bus clock (CLK) cycles.

Code Optimization

The code optimization suggestions in this section cover both
general superscalar optimization (that is, techniques common
to both the AMD-K5 and Pentium processors) and techniques
specific to the AMD-K5 processor. In general, all optimization
techniques used for the Pentium processor apply to any wide-
issue x86 processor, but wider-issue designs like the AMD-K5
processor have fewer restrictions.

General Superscalar Techniques
■ Short Forms—Use shorter forms of instructions to increase

the effective number of instructions that can be examined
for decoding at any one time. Use 8-bit displacements and
jump offsets where possible.

■ Simple Instructions—Use simple instructions with hard-
wired decode because they often perform more efficiently.

40 Code Optimization for the AMD-K5 Processor

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

Moreover, future implementations may increase the penal-
ties associated with microcoded instructions.

■ Dependencies—Spread out true dependencies to increase
the opportunities for parallel execution. Antidependencies
and output dependencies do not impact performance.

■ Memory Operands—Instructions that operate on data in
memory (load/op/store) can inhibit parallelism. Using sepa-
rate move and ALU instructions allows independent opera-
tions to be performed in parallel. On the other hand, if
there are no opportunities for parallel execution, use the
load/op/store forms to reduce the number of register spills
(storing register values in memory to free registers for
other uses) and increase code density.

■ Register Operands—Maintain frequently used values in reg-
isters or on the stack rather than in static storage.

■ Branch Prediction—Use control-flow constructs that allow
effective branch prediction. Although correctly predicted
branches have no cost, mispredicted branches incur a three
clock penalty.

■ Stack References—Use ESP for references to the stack so
that EBP remains available for general use.

■ Stack Allocation—When placing outgoing parameters on the
stack, allocate space by adjusting the stack pointer (prefer-
ably at the same time local storage is allocated on proce-
dure entry) and use moves rather than pushes. This method
of allocation allows random access to the outgoing parame-
ters so that they may be set up when they are calculated,
instead of having to be held somewhere else until the proce-
dure call. This method also uses fewer execution resources
(specifically, fewer register-file write ports when updating
ESP).

■ Shifts—Although there is only one shifter, certain shifts can
be done using other execution units: for example, shift left
1 by adding a value to itself. Use LEA index scaling to shift
left by 1, 2, or 3.

■ Data Embedded in Code—When data is embedded in the
code segment, align it in separate cache blocks from nearby
code to avoid some overhead in maintaining coherency
between the instruction and data caches.

■ Undefined Flags—Do not rely on the behavior of undefined
flag results.

Code Optimization 41

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

■ Loops—Unroll loops to get more parallelism and reduce
loop overhead even with branch prediction. Inline small
routines to avoid procedure-call overhead. In both cases,
however, consider the cost of possible increased register
usage, which might add load/store instructions for register
spilling.

■ Indexed Addressing—There is no penalty for base + index
addressing in the AMD-K5 processor. However, future
implementations may have such a penalty to achieve a
higher overall clock rate.

Techniques Specific to the AMD-K5 Processor
■ Jumps and Loops—JCXZ requires 1 cycle (correctly pre-

dicted) and therefore is faster than a TEST/JZ, in contrast
to the Pentium processor in which JCXZ requires 5 or 6
cycles. All forms of LOOP take 2 cycles (correctly pre-
dicted), which is also faster than the Pentium processor's 7
or 8 cycles.

■ Multiplies—Independent IMULs can be pipelined at one
per cycle with 4-cycle latency, in contrast to the Pentium
processor's serialized 9-cycle time. (MUL has the same
latency, although the implicit AX usage of MUL prevents
independent, parallel MUL operations.)

■ Dispatch Conflicts—Load-balancing (that is, selecting
instructions for parallel decode) is still important, but to a
lesser extent than on the Pentium processor. In particular,
arrange instructions to avoid execution-unit dispatching
conflicts. (See page 43.)

■ Instruction Prefixes—There is no penalty for instruction pre-
fixes, including combinations such as segment-size and
operand-size prefixes. This is particularly important for 16-
bit code. However, future implementations may have penal-
ties for the use of these prefixes.

■ Byte Operations—For byte operations, the high and low
bytes of AX, BX, CX, and DX are effectively independent
registers that can be operated on in parallel. For example,
reading AL does not have a dependency on an outstanding
write to AH.

■ Move and Convert—MOVZX, MOVSX, CBW, CWDE, CWD,
CDQ all take 1 cycle (2 cycles for memory-based input), in
contrast to the Pentium processor's 2 or 3 cycles.

42 Code Optimization for the AMD-K5 Processor

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

■ Bit Scan—BSF and BSR take 1 cycle (2 cycles for memory-
based input), in contrast to the Pentium processor's data-
dependent 6 to 34 cycles.

■ Bit Test—BT, BTS, BTR, and BTC take 1 cycle for register-
based operands, and 2 or 3 cycles for memory-based oper-
ands with immediate bit-offset, in contrast to the Pentium
processor's 4 to 9 cycles. Register-based bit-offset forms on
the AMD-K5 processor take 5 cycles. If the semantics of the
register-based bit-offset form are desired (where the bit off-
set can cover a very large bit string in memory), it is better
to emulate this with simpler instructions that can be inter-
leaved with independent instructions for greater
parallelism.

■ Floating-Point Top-of-Stack Bottleneck—The AMD-K5 proces-
sor has a pipelined floating-point unit. Greater parallelism
can be achieved by using FXCH in parallel with floating-
point operations to alleviate the top-of-stack bottleneck, as
in the Pentium processor. The AMD-K5 processor also per-
mits integer operations (ALU, branch, load/store) in paral-
lel with floating-point operations.

■ Locating Branch Targets—Performance can be sensitive to
code alignment, especially in tight loops. Locating branch
targets to the first 17 bytes of the 32-byte cache line maxi-
mizes the opportunity for parallel execution at the target.
NOPs can be added to adjust this alignment. The AMD-K5
processor executes NOPs (opcode 90h) at the rate of two per
cycle. Adding NOPs is even more effective if they execute
in parallel with existing code. Other instructions of greater
length, such as a register-based TEST instruction, can be
used as NOPs to minimize the overhead of such padding.

■ Branch Prediction—There are two branch prediction bits in
a 32-byte instruction cache line. One bit applies to the first
16 bytes of the line and the second bit applies to the second
16 bytes of the line. For effective branch prediction, code
should be generated with one branch per 16-byte line half.

■ Address-Generation Interlocks (AGIs)—The AMD-K5 proces-
sor does not suffer from the single-cycle penalty that the
486 and Pentium processors have when a result from execu-
tion or from a data-cache access is used to form a cache
address, so it is not necessary to avoid these situations.

Dispatch and Execution Timing 43

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

Dispatch and Execution Timing

This section documents functional unit usage for each instruc-
tion, along with relative cycle numbers for dispatch and execu-
tion of the associated ROPs for the instruction.

Notation

Table 2-1 contains the definitions for the integer instructions.
Table 2-3 contains the definitions for the floating-point instruc-
tions. The first column in these tables indicates the instruction
mnemonic and operand types. The following notations are used
in the AMD-K5 microprocessor documentation:

■ reg—register

■ mem—memory location

■ imm—immediate value

■ int_16—16-bit integer

■ int_32—32-bit integer

■ int_64—64-bit integer

■ real_32—32-bit floating-point number

■ real_64—64-bit floating-point number

■ real_80—80-bit floating-point number

If an operand refers to a specific register, the register name is
used (e.g., AX, DX). When the register name is of the form Exx
(e.g., EAX, ESI), the width of the register depends on the oper-
and size attribute.

44 Code Optimization for the AMD-K5 Processor

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

The second column contains an identifier with the following
format:

The third column in the tables indicates whether the instruc-
tion is Fastpath (F) or Microcoded (M). Fastpath and MROM
ROPs cannot both be present in a decode stage at the same
time. If a microcoded instruction appears at the head of the
byte queue without having been present in the queue on the
previous cycle, there is a one-cycle penalty for MROM entry
point generation.

Each x86 instruction is converted into one or more ROPs. The
fourth column shows the execution unit and timing for each of
the ROPs. The ROP types and corresponding execution units
are:

■ ld—load/store

■ st—load/store

■ alu—either alu0 or alu1

■ alu0—alu0 only

■ alu1—alu1 only

■ brn—branch

■ fadd—floating-point add pipe

■ fmul—floating-point multiply pipe

■ fpmv—floating-point move and compare pipe

■ fpfill—floating-point upper half

MODrm[2:0]

1 = two-byte opcode (0F xx)

MODrm[5:3]

Opcode

Addressing Mode:
 0x = register
 10 = memory without index
 1x = memory with or without index
 11 = memory with index

x_xx_xxxxxxxx_xxx_xxx

Dispatch and Execution Timing 45

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

The x/y value following the ROP type indicates the relative dis-
patch and execution cycle of the opcode, in the absence of any
conflicts. The format is:

x/y[/z]

where:

■ x = Dispatch Cycle—The relative cycle in which the ROP is
dispatched from decode to the reservation station.

■ y = Execution Cycle—The relative cycle in which the ROP is
issued from the reservation station to the execution unit.

■ z = Result Cycle—The relative cycle in which the result is
returned on the result bus. It is indicated only when the
latency is greater than one cycle. For stores, it reflects the
relative time that a store operand can be forwarded from
the store buffer to a dependent load operation.

Using the time that the first ROP of an instruction is dis-
patched to an execution unit as clock 1, the x/y value indicates
in which clock each ROP is dispatched and executed relative to
clock 1. The execution order and timing does not necessarily
match the dispatch order and timing.

If any of the instructions read from or write to memory, it is
assumed that the data exists in the cache.

46 Code Optimization for the AMD-K5 Processor

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

Integer Instructions

Table 2-1 shows the execution-unit usage for each integer
instruction, along with relative cycle numbers for dispatch and
execution of the associated ROPs for the instruction.

Table 2-1. Integer Instructions

Instruction Mnemonic Opcode Format Fastpath or
Microcode

Execution
Unit Timing

ADD reg, reg 0_0x_000000xx_xxx_xxx F alu 1/1

ADD reg, mem 0_1x_0000001x_xxx_xxx F ld 1/1
alu 1/2

ADD mem, reg 0_1x_0000000x_xxx_xxx F
ld 1/1
alu 1/2
st 1/1/3

ADD AL/AX/EAX, imm 0_xx_0000010x_xxx_xxx F alu 1/1

ADD reg, imm 0_0x_100000xx_000_xxx F alu 1/1

ADD mem, imm 0_1x_100000xx_000_xxx F
ld 1/1
alu 1/2
st 1/1/3

AND reg, reg 0_0x_001000xx_xxx_xxx F alu 1/1

AND reg, mem 0_1x_0010001x_xxx_xxx F ld 1/1
alu 1/2

AND mem, reg 0_1x_0010000x_xxx_xxx F
ld 1/1
alu 1/2
st 1/1/3

AND AL/AX/EAX, imm 0_xx_0010010x_xxx_xxx F alu 1/1

AND reg, imm 0_0x_100000xx_100_xxx F alu 1/1

AND mem, imm 0_1x_100000xx_100_xxx F
ld 1/1
alu 1/2
st 1/1/3

BSF reg, reg 1_0x_10111100_xxx_xxx F alu1 1/1

BSF reg, mem 1_1x_10111100_xxx_xxx F ld 1/1
alu1 1/2

BSR reg, reg 1_0x_10111101_xxx_xxx F alu1 1/1

BSR reg, mem 1_1x_10111101_xxx_xxx F ld 1/1
alu1 1/2

BSWAP reg 1_xx_11001xxx_xxx_xxx F alu1 1/1

BT reg, reg 1_0x_10100011_xxx_xxx F alu1 1/1

Dispatch and Execution Timing 47

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

BT mem, reg 1_1x_10100011_xxx_xxx M

alu1 1/1
alu 1/2
alu 2/3
ld 2/4
alu1 3/5

BT reg, imm 1_0x_10111010_100_xxx F alu1 1/1

BT mem, imm 1_1x_10111010_100_xxx F
ld 1/1
alu1 1/2

BTC reg, reg 1_0x_10111011_xxx_xxx F alu1 1/1

BTC mem, reg 1_1x_10111011_xxx_xxx M

alu1 1/1
alu 1/2
alu 2/3
ld 2/4
alu1 3/5
st 3/5/6

BTC reg, imm 1_0x_10111010_111_xxx F alu1 1/1

BTC mem, imm 1_1x_10111010_111_xxx F
ld 1/1
alu1 1/2
st 1/1/3

BTR reg, reg 1_0x_10110011_xxx_xxx F alu1 1/1

BTR mem, reg 1_1x_10110011_xxx_xxx M

alu1 1/1
alu 1/2
alu 2/3
ld 2/4
alu1 3/5
st 3/5/6

BTR reg, imm 1_0x_10111010_110_xxx F alu1 1/1

BTR mem, imm 1_1x_10111010_110_xxx F
ld 1/1
alu1 1/2
st 1/1/3

BTS reg, reg 1_0x_10101011_xxx_xxx F alu1 1/1

BTS mem, reg 1_1x_10101011_xxx_xxx M

alu1 1/1
alu 1/2
alu 2/3
ld 2/4
alu1 3/5
st 3/5/6

BTS reg, imm 1_0x_10111010_101_xxx F alu1 1/1

Table 2-1. Integer Instructions (continued)

Instruction Mnemonic Opcode Format Fastpath or
Microcode

Execution
Unit Timing

48 Code Optimization for the AMD-K5 Processor

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

BTS mem, imm 1_1x_10111010_101_xxx F
ld 1/1
alu1 1/2
st 1/1/3

CALL near relative 0_xx_11101000_xxx_xxx M

alu 1/1
st 1/1/2
alu 1/1
brn 1/1

CALL near reg 0_0x_11111111_010_xxx M

alu 1/1
st 1/1/2
alu 1/1
brn 1/1

CALL near mem 0_1x_11111111_010_xxx M

alu 1/1
ld 1/1
st 1/1/2
alu 1/1
brn 2/2

CBW/DE 0_xx_10011000_xxx_xxx F alu1 1/1

CMP reg, reg 0_0x_001110xx_xxx_xxx F alu 1/1

CMP reg, mem 0_1x_0011101x_xxx_xxx F ld 1/1
alu 1/2

CMP mem, reg 0_1x_0011100x_xxx_xxx F ld 1/1
alu 1/2

CMP AL/AX/EAX, imm 0_xx_0011110x_xxx_xxx F alu 1/1

CMP reg, imm 0_0x_100000xx_111_xxx F alu 1/1

CMP mem, imm 0_1x_100000xx_111_xxx F ld 1/1
alu 1/2

CWD/DQ 0_xx_10011001_xxx_xxx F alu1 1/1

DEC reg 0_xx_01001xxx_xxx_xxx F alu 1/1

DEC reg 0_0x_1111111x_001_xxx F alu 1/1

DEC mem 0_1x_1111111x_001_xxx F
ld 1/1
alu 1/2
st 1/1/3

IMUL AX, AL, reg 0_0x_11110110_101_xxx F fpfill 1/1/4
fmul 1/1/4

IMUL EDX:EAX, EAX, reg 0_0x_11110111_101_xxx F fpfill 1/1/4
fmul 1/1/4

IMUL reg, reg 1_0x_10101111_xxx_xxx F fpfill 1/1/4
fmul 1/1/4

Table 2-1. Integer Instructions (continued)

Instruction Mnemonic Opcode Format Fastpath or
Microcode

Execution
Unit Timing

Dispatch and Execution Timing 49

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

IMUL reg, reg, imm 0_0x_011010x1_xxx_xxx F fpfill 1/1/4
fmul 1/1/4

IMUL AX, AL, mem 0_1x_11110110_101_xxx F
ld 1/1
fpfill 1/2/4
fmul 1/2/4

IMUL EDX:EAX, EAX, mem 0_1x_11110111_101_xxx F
ld 1/1
fpfill 1/2/4
fmul 1/2/4

IMUL reg, mem 1_1x_10101111_xxx_xxx F
ld 1/1
fpfill 1/2/4
fmul 1/2/4

IMUL reg, reg, mem 0_1x_011010x1_xxx_xxx F
ld 1/1
fpfill 1/2/4
fmul 1/2/4

INC reg 0_xx_01000xxx_xxx_xxx F alu 1/1

INC reg 0_0x_1111111x_000_xxx F alu 1/1

INC mem 0_1x_1111111x_000_xxx F
ld 1/1
alu 1/2
st 1/1/3

Jcc short displacement 0_xx_0111xxxx_xxx_xxx F brn 1/1

Jcc long displacement 1_xx_1000xxxx_xxx_xxx F brn 1/1

JCXZ short displacement 0_xx_11100011_xxx_xxx F brn 1/1

JMP long displacement 0_xx_11101001_xxx_xxx F brn 1/1

JMP short displacement 0_xx_11101011_xxx_xxx F brn 1/1

JMP reg 0_0x_11111111_100_xxx F brn 1/1

JMP mem 0_1x_11111111_100_xxx F ld 1/1
brn 1/2

LEA 0_1x_10001101_xxx_xxx F ld 1/1

LOOP short displacement 0_xx_11100010_xxx_xxx F alu 1/1
brn 1/2

LOOPE short displacement 0_xx_11100001_xxx_xxx M alu 1/1
brn 1/2

LOOPNE short displacement 0_xx_11100000_xxx_xxx M alu 1/1
brn 1/2

MOV reg, reg 0_0x_100010xx_xxx_xxx F alu 1/1

MOV reg, mem 0_1x_1000101x_xxx_xxx F ld 1/1

MOV mem, reg 0_10_1000100x_xxx_xxx F st 1/1

Table 2-1. Integer Instructions (continued)

Instruction Mnemonic Opcode Format Fastpath or
Microcode

Execution
Unit Timing

50 Code Optimization for the AMD-K5 Processor

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

MOV mem, reg

(base + index addressing)
0_11_1000100x_xxx_xxx F ld 1/1

st 1/2/3

MOV AL/AX/EAX, mem 0_xx_1010000x_xxx_xxx F ld 1/1

MOV mem, AL/AX/EAX 0_xx_1010001x_xxx_xxx F st 1/1

MOV reg, imm 0_0x_1100011x_000_xxx F alu 1/1

MOV reg, imm 0_xx_1011xxxx_xxx_xxx F alu 1/1

MOV mem, imm 0_10_1100011x_000_xxx F alu 1/1
st 1/1

MOV mem, imm

(base + index addressing)
0_11_1100011x_000_xxx F

alu 1/1
ld 1/1
st 1/2/3

MOVSX reg, reg 1_0x_1011111x_xxx_xxx F alu1 1/1

MOVSX reg, mem 1_1x_1011111x_xxx_xxx F ld 1/1
alu1 1/2

MOVZX reg, reg 1_0x_1011011x_xxx_xxx F alu 1/1

MOVZX reg, mem 1_1x_1011011x_xxx_xxx F ld 1/1
alu 1/2

MUL AX, AL, reg 0_0x_11110110_100_xxx F fpfill 1/1/4
fmul 1/1/4

MUL EDX:EAX, EAX, reg 0_0x_11110111_100_xxx F fpfill 1/1/4
fmul 1/1/4

MUL AX, AL, mem 0_1x_11110110_100_xxx F
ld 1/1
fpfill 1/2/4
fmul 1/2/4

MUL EDX:EAX, EAX, mem 0_1x_11110111_100_xxx F
ld 1/1
fpfill 1/2/4
fmul 1/2/4

NEG reg 0_0x_1111011x_011_xxx F alu 1/1

NEG mem 0_1x_1111011x_011_xxx F
ld 1/1
alu 1/2
st 1/1/3

NOP (XCHG EAX, EAX) 0_xx_10010000_xxx_xxx F alu 1/1

NOT reg 0_0x_1111011x_010_xxx F alu 1/1

NOT mem 0_1x_1111011x_010_xxx F
ld 1/1
alu 1/2
st 1/1/3

OR reg, reg 0_0x_000010xx_xxx_xxx F alu 1/1

Table 2-1. Integer Instructions (continued)

Instruction Mnemonic Opcode Format Fastpath or
Microcode

Execution
Unit Timing

Dispatch and Execution Timing 51

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

OR reg, mem 0_1x_0000101x_xxx_xxx F ld 1/1
alu 1/2

OR mem, reg 0_1x_0000100x_xxx_xxx F
ld 1/1
alu 1/2
st 1/1/3

OR AL/AX/EAX, imm 0_xx_0000110x_xxx_xxx F alu 1/1

OR reg, imm 0_0x_100000xx_001_xxx F alu 1/1

OR mem, imm 0_1x_100000xx_001_xxx F
ld 1/1
alu 1/2
st 1/1/3

POP reg 0_xx_01011xxx_xxx_xxx F ld 1/1
alu 1/1

POP reg 0_0x_10001111_000_xxx F ld 1/1
alu 1/1

POP mem 0_1x_10001111_000_xxx M

ld 1/1
ld 1/1
st 2/2/3
alu 2/2

PUSH reg 0_xx_01010xxx_xxx_xxx F st 1/1
alu 1/1/2

PUSH reg 0_0x_11111111_110_xxx F st 1/1
alu 1/1/2

PUSH imm 0_xx_011010x0_xxx_xxx F
alu 1/1
st 1/1/2
alu 1/1

PUSH mem 0_1x_11111111_110_xxx M
ld 1/1
st 1/1/2
alu 1/1

RET near 0_xx_11000011_xxx_xxx F
ld 1/1
alu 1/1
brn 1/2

RET near imm 0_xx_11000010_xxx_xxx M

ld 1/1
alu 1/1
alu 1/2
brn 1/2

ROL reg, 1 0_0x_1101000x_000_xxx F alu1 1/1

ROL mem, 1 0_1x_1101000x_000_xxx F
ld 1/1
alu1 1/2
st 1/1/3

Table 2-1. Integer Instructions (continued)

Instruction Mnemonic Opcode Format Fastpath or
Microcode

Execution
Unit Timing

52 Code Optimization for the AMD-K5 Processor

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

ROL reg, imm 0_0x_1100000x_000_xxx F alu1 1/1

ROL mem, imm 0_1x_1100000x_000_xxx F
ld 1/1
alu1 1/2
st 1/1/3

ROL reg, CL 0_0x_1101001x_000_xxx F alu1 1/1

ROL mem, CL 0_1x_1101001x_000_xxx F
ld 1/1
alu1 1/2
st 1/1/3

ROR reg, 1 0_0x_1101000x_001_xxx F alu1 1/1

ROR mem, 1 0_1x_1101000x_001_xxx F
ld 1/1
alu1 1/2
st 1/1/3

ROR reg, imm 0_0x_1100000x_001_xxx F alu1 1/1

ROR mem, imm 0_1x_1100000x_001_xxx F
ld 1/1
alu1 1/2
st 1/1/3

ROR reg, CL 0_0x_1101001x_001_xxx F alu1 1/1

ROR mem, CL 0_1x_1101001x_001_xxx F
ld 1/1
alu1 1/2
st 1/1/3

SAR reg, 1 0_0x_1101000x_111_xxx F alu1 1/1

SAR mem, 1 0_1x_1101000x_111_xxx F
ld 1/1
alu1 1/2
st 1/1/3

SAR reg, mem 0_0x_1100000x_111_xxx F alu1 1/1

SAR mem, imm 0_1x_1100000x_111_xxx F
ld 1/1
alu1 1/2
st 1/1/3

SAR reg, CL 0_0x_1101001x_111_xxx F alu1 1/1

SAR mem, CL 0_1x_1101001x_111_xxx F
ld 1/1
alu1 1/2
st 1/1/3

SETcc reg 1_0x_1001xxxx_xxx_xxx F brn 1/1

SETcc mem 1_1x_1001xxxx_xxx_xxx F
brn 1/1
ld 1/1
st 1/2/3

SHL reg, 1 0_0x_1101000x_1x0_xxx F alu1 1/1

Table 2-1. Integer Instructions (continued)

Instruction Mnemonic Opcode Format Fastpath or
Microcode

Execution
Unit Timing

Dispatch and Execution Timing 53

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

SHL mem, 1 0_1x_1101000x_1x0_xxx F
ld 1/1
alu1 1/2
st 1/1/3

SHL reg, mem 0_0x_1100000x_1x0_xxx F alu1 1/1

SHL mem, imm 0_1x_1100000x_1x0_xxx F
ld 1/1
alu1 1/2
st 1/1/3

SHL reg, CL 0_0x_1101001x_1x0_xxx F alu1 1/1

SHL mem, CL 0_1x_1101001x_1x0_xxx F
ld 1/1
alu1 1/2
st 1/1/3

SHLD reg, reg, imm 1_0x_10100100_xxx_xxx F alu1 1/1
alu1 2/2

SHLD mem, reg, imm 1_1x_10100100_xxx_xxx M

alu1 1/1
ld 1/1
alu1 2/2
st 2/2/3

SHLD reg, reg, CL 1_0x_10100101_xxx_xxx F alu1 1/1
alu1 2/2

SHLD mem, reg, CL 1_1x_10100101_xxx_xxx M

alu1 1/1
ld 1/1
alu1 2/2
st 2/2/3

SHR reg, 1 0_0x_1101000x_101_xxx F alu1 1/1

SHR mem, 1 0_1x_1101000x_101_xxx F
ld 1/1
alu1 1/2
st 1/1/3

SHR reg, mem 0_0x_1100000x_101_xxx F alu1 1/1

SHR mem, imm 0_1x_1100000x_101_xxx F
ld 1/1
alu1 1/2
st 1/1/3

SHR reg, CL 0_0x_1101001x_101_xxx F alu1 1/1

SHR mem, CL 0_1x_1101001x_101_xxx F
ld 1/1
alu1 1/2
st 1/1/3

SHRD reg, reg, imm 1_0x_10101100_xxx_xxx F alu1 1/1
alu1 2/2

Table 2-1. Integer Instructions (continued)

Instruction Mnemonic Opcode Format Fastpath or
Microcode

Execution
Unit Timing

54 Code Optimization for the AMD-K5 Processor

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

SHRD mem, reg, imm 1_1x_10101100_xxx_xxx M

alu1 1/1
ld 1/1
alu1 2/2
st 2/2/3

SHRD reg, reg, CL 1_0x_10101101_xxx_xxx F
alu1 1/1
alu1 2/2

SHRD mem, reg, CL 1_1x_10101101_xxx_xxx M

alu1 1/1
ld 1/1
alu1 2/2
st 2/2/3

SUB reg, reg 0_0x_001010xx_xxx_xxx F alu 1/1

SUB reg, mem 0_1x_0010101x_xxx_xxx F ld 1/1
alu 1/2

SUB mem, reg 0_1x_0010100x_xxx_xxx F
ld 1/1
alu 1/2
st 1/1/3

SUB AL/AX/EAX, imm 0_xx_0010110x_xxx_xxx F alu 1/1

SUB reg, imm 0_0x_100000xx_101_xxx F alu 1/1

SUB mem, imm 0_1x_100000xx_101_xxx F
ld 1/1
alu 1/2
st 1/1/3

TEST reg, reg 0_0x_1000010x_xxx_xxx F alu 1/1

TEST mem, reg 0_1x_1000010x_xxx_xxx F ld 1/1
alu 1/2

TEST reg, imm 0_0x_1111011x_00x_xxx F alu 1/1

TEST AL/AX/EAX, imm 0_xx_1010100x_xxx_xxx F alu 1/1

TEST mem, imm 0_1x_1111011x_00x_xxx F ld 1/1
alu 1/2

XCHG EAX, reg (except EAX) 0_xx_10010xxx_xxx_xxx F
alu 1/1
alu 1/1
alu 2/2

XCHG reg, reg 0_0x_1000011x_xxx_xxx F
alu 1/1
alu 1/1
alu 2/2

XCHG mem, reg 0_1x_1000011x_xxx_xxx F
ld 1/1
st 1/1/2
alu 1/2

XOR reg, reg 0_0x_001100xx_xxx_xxx F alu 1/1

Table 2-1. Integer Instructions (continued)

Instruction Mnemonic Opcode Format Fastpath or
Microcode

Execution
Unit Timing

Dispatch and Execution Timing 55

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

Integer Dot Product Example

This example illustrates an optimal code sequence for an inte-
ger dot product operation that performs multiply/accumulates
(MACs) at the rate of one every 3 cycles. In this example, the
array size is a constant. The loop is unrolled to perform sepa-
rate MAC operations in parallel for even and odd elements.
The final sum is generated outside the loop (as well as the final
iteration for odd-sized arrays).

mac_loop:
MOV EAX, [ESI][ECX*4] ;load A(i)
MOV EBX, [ESI][ECX*4]+4 ;load A(i+1)
IMUL EAX, [EDI][ECX*4] ;A(i) * B(i)
IMUL EBX, [EDI][ECX*4]+4 ;A(i+1) * B(i+1)
ADD ECX, 2 ;increment index
ADD EDX, EAX ;even sum
ADD EBP, EBX ;odd sum
CMP ECX, EVEN_ARRAY_SIZE ;loop control
JL mac_loop ;jump

;do final MAC here for odd-sized arrays

ADD EDX, EBP ;final sum

Table 2-2 shows the timing of internal operations from dis-
patch to retire of each ROP for nearly two iterations of this
loop. All memory accesses are assumed to hit in the cache.
EVEN_ARRAY_SIZE is set to 20.

XOR reg, mem 0_1x_0011001x_xxx_xxx F ld 1/1
alu 1/2

XOR mem, reg 0_1x_0011000x_xxx_xxx F
ld 1/1
alu 1/2
st 1/1/3

XOR AL/AX/EAX, imm 0_xx_0011010x_xxx_xxx F alu 1/1

XOR reg, imm 0_0x_100000xx_110_xxx F alu 1/1

XOR mem, imm 0_1x_100000xx_110_xxx F
ld 1/1
alu 1/2
st 1/1/3

Table 2-1. Integer Instructions (continued)

Instruction Mnemonic Opcode Format Fastpath or
Microcode

Execution
Unit Timing

56 Code Optimization for the AMD-K5 Processor

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

Table 2-2. Integer Dot Product Internal Operations Timing

Instruction
Cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14

MOV EAX,[ESI][ECX*4] L > - - - !

MOV EBX,[ESI][ECX*4]+4 L > - - - !

IMUL EAX,[EDI][ECX*4]
L > - - !

- M M M M > !

IMUL EBX,[EDI][ECX*4]+4
L > - - - !

- M M M M > !

ADD ECX,2 A > - - - !

ADD EDX,EAX - - - A > !

ADD EBP,EBX - - - A > !

CMP ECX,20 - - - A > !

JL LOOP - - - - B > !

MOV EAX,[ESI][ECX*4] L > - - - !

MOV EBX,[ESI][ECX*4]+4 L > - - - !

IMUL EAX,[EDI][ECX*4]
L > - - !

- M M M M > !

IMUL EAX,[EDI][ECX*4]+4
L > - - - !

- M M M M >
Notes:

L— load execute
M— multiply execute
A— ALU execute
B— branch execute
>— result
!— retire (update real state)
- — preceding execute: waiting in the reservation station

Dispatch and Execution Timing 57

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

Floating-Point Instructions

Floating-point ROPs are always dispatched in pairs to the FPU
reservation station. The first ROP conveys the lower halves of
the A and B operands, and it always has the fpfill ROP type.
The second ROP conveys the upper halves of the operands, as
well as the numeric opcode. Data from both ROPs is merged in
the reservation station and must be converted into an internal
floating-point format before it can be issued to the add pipe
(fadd), multiply pipe (fmul), or detect pipe (fmv). It takes one
cycle to perform the conversion, and this delay is incurred
whenever the source of the data is the register file or one of
the other functional units (e.g., load/store, ALU). If data is
being forwarded from the FPU itself, however, no format con-
version is required and operands are fast-forwarded from the
back end of a pipe to the front of any other pipe without the
one-cycle delay.

The add/subtract/reverse FPU latencies assume that cancella-
tion does not occur in the adder/subtractor. If cancellation
does occur, an extra cycle is required to normalize the result.

Table 2-3 shows the execution-unit usage for each floating-
point instruction, along with relative cycle numbers for dis-
patch and execution of the associated ROPs for the instruction.

Table 2-3. Floating-Point Instructions

Instruction Mnemonic Opcode Format Fastpath or
Microcoded

Execution
Unit Timing

FABS 0_0x_11011001_100_xxx F fpfill 1/2/4
fmv 1/2/4

FADD ST, ST(i) 0_0x_11011000_000_xxx F fpfill 1/2/5
fadd 1/2/5

FADD ST(i), ST 0_0x_11011000_000_xxx F fpfill 1/2/5
fadd 1/2/5

FADD real_32 0_1x_11011000_000_xxx F
ld 1/1
fpfill 1/3/6
fadd 1/3/6

FADD real_64 0_1x_11011100_000_xxx M

ld 1/1
ld 1/2
fpfill 1/4/7
fadd 1/4/7

58 Code Optimization for the AMD-K5 Processor

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

FADDP ST(i), ST 0_0x_11011110_000_xxx F fpfill 1/2/5
fadd 1/2/5

FCHS 0_0x_11011001_100_xxx F fpfill 1/2/4
fchs 1/2/4

FCOM ST(i) 0_0x_11011x00_010_xxx F fpfill 1/2/4
fcmpst 1/2/4

FCOM real_32 0_1x_11011000_010_xxx F
ld 1/1
fpfill 1/3/5
fmv 1/3/5

FCOM real_64 0_1x_11011100_010_xxx M

ld 1/1
ld 1/2
fpfill 1/4/6
fadd 1/4/6

FCOMP ST(i) 0_0x_11011x00_011_xxx F
fpfill 1/2/4
fmv 1/2/4
alu 1/1

FCOMP real_32 0_1x_11011000_011_xxx F
ld 1/1
fpfill 1/3/5
fmv 1/3/5

FCOMP real_64 0_1x_11011100_011_xxx M

ld 1/1
ld 1/2
fpfill 1/4/6
fadd 1/4/6

FCOMPP 0_0x_11011110_011_xxx F
fpfill 1/2/4
fmv 1/2/4
nop 1/1/2

FDECSTP 0_0x_11011001_110_xxx M alu 1/1/2
alu 1/1/2

FIADD int_16 0_1x_11011110_000_xxx M

ld 1/1
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/10
fadd 2/7/10

FIADD int_32 0_1x_11011010_000_xxx M

ld 1/1
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/10
fadd 2/7/10

Table 2-3. Floating-Point Instructions (continued)

Instruction Mnemonic Opcode Format Fastpath or
Microcoded

Execution
Unit Timing

Dispatch and Execution Timing 59

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

FICOM int_16 0_1x_11011110_010_xxx M

ld 1/1
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/9
fmv 2/7/9

FICOM int_32 0_1x_11011010_010_xxx M

ld 1/1
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/9
fmv 2/7/9

FICOMP int_16 0_1x_11011110_011_xxx M

ld 1/1
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/9
fmv 2/7/9

FICOMP int_32 0_1x_11011010_011_xxx M

ld 1/1
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/9
fmv 2/7/9

FILD int_16 0_1x_11011111_000_xxx F
ld 1/1
fpfill 1/3/7
fadd 1/3/7

FILD int_32 0_1x_11011011_000_xxx F
ld 1/1
fpfill 1/3/7
fadd 1/3/7

FILD int_64 0_1x_11011111_101_xxx M

ld 1/1
ld 1/2
fpfill 1/4/8
fadd 1/4/8

FIMUL int_16 0_1x_11011110_001_xxx M

ld 1/1
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/11
fmul 2/7/11

FIMUL int_32 0_1x_11011010_001_xxx M

ld 1/1
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/11
fmul 2/7/11

Table 2-3. Floating-Point Instructions (continued)

Instruction Mnemonic Opcode Format Fastpath or
Microcoded

Execution
Unit Timing

60 Code Optimization for the AMD-K5 Processor

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

FIST int_16 0_1x_11011111_010_xxx M

ld 1/1
fpfill 1/2/5
fadd 1/2/5
st 1/5/6

FIST int_32 0_1x_11011011_010_xxx M

ld 1/1
fpfill 1/2/5
fadd 1/2/5
st 1/5/6

FISTP int_16 0_1x_11011111_011_xxx M

ld 1/1
fpfill 1/2/5
fadd 1/2/5
st 1/5/6

FISTP int_32 0_1x_11011011_011_xxx M

ld 1/1
fpfill 1/2/5
fadd 1/2/5
st 1/5/6

FISTP int_64 0_1x_11011111_111_xxx M

ld 1/1
ld 1/2
fpfill 1/2/5
fadd 1/2/5
st 2/3/6
st 2/4/7

FISUB int_16 0_1x_11011110_100_xxx M

ld 1/1
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/10
fadd 2/7/10

FISUB int_32 0_1x_11011010_100_xxx M

ld 1/1
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/10
fadd 2/7/10

FISUBR int_16 0_1x_11011110_101_xxx M

ld 1/1
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/10
fadd 2/7/10

Table 2-3. Floating-Point Instructions (continued)

Instruction Mnemonic Opcode Format Fastpath or
Microcoded

Execution
Unit Timing

Dispatch and Execution Timing 61

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

FISUBR int_32 0_1x_11011010_101_xxx M

ld 1/1
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/10
fadd 2/7/10

FLD real_32 0_1x_11011001_000_xxx F
ld 1/1
fpfill 1/3/5
fmv 1/3/5

FLD real_64 0_1x_11011101_000_xxx M

ld 1/1
ld 1/2
fpfill 1/4/6
fmv 1/4/6

FLD real_80 0_1x_11011011_101_xxx M

ld 1/1
ld 1/2
fpfill 1/6/8
fmv 1/6/8

FLD ST(i) 0_0x_11011001_000_xxx F
fpfill 1/2/4
fmv 1/2/4
nop 1/1

FMUL ST, ST(i) 0_0x_11011000_001_xxx F fpfill 1/2/8
fmul 1/2/8

FMUL ST(i), ST 0_0x_11011100_001_xxx F fpfill 1/2/8
fmul 1/2/8

FMUL real_32 0_1x_11011000_001_xxx F
ld 1/1
fpfill 1/3/7
fmul 1/3/7

FMUL real_64 0_1x_11011100_001_xxx M

ld 1/1
ld 1/2
fpfill 1/4/10
fmul 1/4/10

FMULP ST, ST(i) 0_0x_11011110_001_xxx F fpfill 1/2/8
fmul 1/2/8

FMULP ST(i), ST 0_0x_11011110_001_xxx F fpfill 1/2/8
fmul 1/2/8

FNOP 0_0x_11011001_010_xxx F alu 1/1/2
alu 1/1/2

FRNDINT 0_0x_11011001_111_xxx F fpfill 1/2/9
fadd 1/2/9

Table 2-3. Floating-Point Instructions (continued)

Instruction Mnemonic Opcode Format Fastpath or
Microcoded

Execution
Unit Timing

62 Code Optimization for the AMD-K5 Processor

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

FSCALE 0_0x_11011001_111_xxx F fpfill 1/2/8
fadd 1/2/8

FST real_32 0_1x_11011001_010_xxx M

ld 1/1
fpfill 1/2/4
fmv 1/2/4
st 1/2/5

FST ST(i) 0_0x_11011101_010_xxx F
fpfill 1/2/4
fmv 1/2/4

FSTP real_32 0_1x_11011001_011_xxx M

ld 1/1
fpfill 1/2/4
fmv 1/2/4
st 1/2/5

FSTP real_64 0_1x_11011101_011_xxx M

ld 1/1
ld 1/2
fpfill 1/2/4
fmv 1/2/4
st 2/3/5
st 2/4/6

FSTP real_80 0_1x_11011011_111_xxx M

ld 1/1
ld 1/2
fpfill 1/2/4
fmv 1/2/4
st 2/3/5
st 2/4/6

FSTP ST(i) 0_0x_11011x01_011_xxx F fpfill 1/2/4
fmv 1/2/4

FSUB ST, ST(i) 0_0x_11011000_100_xxx F fpfill 1/2/5
fadd 1/2/5

FSUB ST(i), ST 0_0x_11011100_100_xxx F fpfill 1/2/5
fadd 1/2/5

FSUB real_32 0_1x_11011000_100_xxx F
ld 1/1
fpfill 1/3/6
fadd 1/3/6

FSUB real_64 0_1x_11011100_100_xxx M

ld 1/1
ld 1/2
fpfill 1/4/7
fadd 1/4/7

FSUBP ST(i), ST 0_0x_11011110_100_xxx F fpfill 1/2/5
fadd 1/2/5

Table 2-3. Floating-Point Instructions (continued)

Instruction Mnemonic Opcode Format Fastpath or
Microcoded

Execution
Unit Timing

Dispatch and Execution Timing 63

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

FSUBR ST, ST(i) 0_0x_11011000_101_xxx F fpfill 1/2/5
fadd 1/2/5

FSUBR ST(i), ST 0_0x_11011100_101_xxx F fpfill 1/2/5
fadd 1/2/5

FSUBR real_32 0_1x_11011000_101_xxx F
ld 1/1
fpfill 1/3/6
fadd 1/3/6

FSUBR real_64 0_1x_11011100_101_xxx M

ld 1/1
ld 1/2
fpfill 1/4/7
fadd 1/4/7

FSUBRP ST(i), ST 0_0x_11011110_101_xxx F fpfill 1/2/5
fadd 1/2/5

FTST 0_0x_11011001_100_xxx F fpfill 1/2/4
fmv 1/2/4

FUCOM ST(i) 0_0x_11011101_100_xxx F fpfill 1/2/4
fmv 1/2/4

FUCOMP ST(i) 0_0x_11011101_101_xxx F
fpfill 1/2/4
fmv 1/2/4
nop 1/1

FUCOMPP 0_0x_11011010_101_xxx F
fpfill 1/2/4
fmv 1/2/4
nop 1/1

FWAIT 0_xx_10011011_xxx_xxx F alu 1/1

FXAM 0_0x_11011001_100_xxx F fpfill 1/2/4
fmv 1/2/4

FXCH ST(i) 0_0x_11011001_001_xxx F brn 1/1

FXTRACT 0_0x_11011001_110_xxx M

fpfill 1/2/4
fmv 1/2/4
fpfill 2/3/11
fadd 2/3/11
fpfill 3/4/6
fmv 3/4/6

Table 2-3. Floating-Point Instructions (continued)

Instruction Mnemonic Opcode Format Fastpath or
Microcoded

Execution
Unit Timing

64 Code Optimization for the AMD-K5 Processor

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

General Registers 65

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

3
AMD-K5 Processor
Initialization

The internal state of the AMD-K5 processor can be initialized
to known values via either the RESET or INIT signal. RESET
takes effect immediately, asynchronously to whatever the pro-
cessor may be doing. INIT is recognized only at the next
instruction boundary after assertion. RESET provides a com-
plete initialization, whereas INIT provides only a subset of
this. Specifically, INIT does not affect the numeric coprocessor
state or the cache contents. The initialized internal state is
described in the following paragraphs. Except where explicitly
noted, the resulting state is the same for both RESET and
INIT.

General Registers

All general registers except EAX and EDX are cleared. EDX is
loaded with the processor ID value. This is the value returned
by issuing the CPUID instruction with a 1 in EAX (see
“CPUID” on page 29). EAX is normally cleared, although if
BIST is run along with reset and an error is detected, EAX will
be loaded with a BIST error code.

66 AMD-K5 Processor Initialization

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

Segment Registers

The selector portion of all segment registers is cleared. The
access rights and attribute fields are set up as shown in Table
3-1.

The limit fields are set to FFFFh. For CS, the base address is
set to FFFF_0000h; for all others the base address is 0. Note
that IDTR and GDTR consist of the just base and limit values,
which are initialized to 0 and FFFFh, respectively.

EIP and EFLAGS

All bits of EFLAGS are cleared, with the exception of bit 1,
which is hardwired to a 1. EIP is set to 0000_FFF0h.

Control and Debug Registers

On RESET, CR0 is initialized to 0600_0010h; the NW and CD
bits are set to disable the caches. On INIT, the NW and CD bits
retain their prior state. Note that the ET bit is always set. CR2,
CR3, and CR4 are cleared. Debug registers 0–3 are cleared.
DR6 is set to FFFF_0FF0h, and DR7 is set to 0000_0400h (bit
10 is hardwired to a 1).

Table 3-1. Segment Register Attribute Fields Initial Values

Attribute Field Value Description

G 0 Byte granularity

D/B 0 16-bit

P 1 Present

DPL 0 Privilege level

S 1 Application segment (except LDTR)

Type 2 Data, read/write

Model-Specific Registers 67

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

Model-Specific Registers

The HWCR (Hardware Configuration Register) is cleared. On
RESET, the TSC (Time Stamp Counter) is cleared, although it
starts incrementing some clocks before the first instruction is
fetched. INIT does not affect the TSC.

Caches and TLB

All TLB entries are invalidated; all cache Tag Valid bits are
cleared on RESET. All other cache contents are undefined. On
INIT, the Tag Valid bits, as well as all other cache contents,
retain their prior state.

Floating-Point Unit

The state of the FPU is initialized by RESET only; it is unaf-
fected by INIT. On RESET, the FP instruction address, data
address, opcode, Status Word, and Control Word are all
cleared (note that FP Control Word bit 6 is hardwired to 1).
The FP Tag Word is set to 5555h. All entries in the FP stack are
initialized to 0.

68 AMD-K5 Processor Initialization

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

AMD-K5 Processor Test and Debug 69

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

4
AMD-K5 Processor Test and
Debug

The AMD-K5 processor has the following modes in which pro-
cessor and system operation can be tested or debugged:

■ Hardware Configuration Register (HWCR)—The HWCR is a
model-specific register that contains configuration bits that
enable cache, branch tracing, debug, and clock control
functions.

■ Built-In Self-Test (BIST)—Both normal and test access port
(TAP) BIST.

■ Output-Float Test—A test mode that causes the AMD-K5
processor to float all of its output and bidirectional signals.

■ Cache and TLB Testing—The Array Access Register (AAR)
supports writes and reads to any location in the tag and
data arrays of the processor’s on-chip caches and TLBs.

■ Debug Registers—Standard 486 debug functions, with an I/O-
breakpoint extension.

■ Branch Tracing—A pair of special bus cycles can be driven
immediately after taken branches to specify information
about the branch instruction and its target. The Hardware
Configuration Register (HWCR) provides support for this
and other debug functions.

■ Functional Redundancy Checking—Support for real-time
testing that uses two processors in a master-checker
relationship.

70 AMD-K5 Processor Test and Debug

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

■ Test Access Port (TAP) Boundary-Scan Testing—The JTAG
test access functions defined by the IEEE Standard Test
Access Port and Boundary-Scan Architecture (IEEE 1149.1-
1990) specification.

■ Hardware Debug Tool (HDT)—The hardware debug tool
(HDT), sometimes referred to as the debug port or Probe
mode, is a collection of signals, registers, and processor
microcode that is enabled when external debug logic drives
R/S Low or loads the AMD-K5 processor’s Test Access Port
(TAP) instruction register with the USEHDT instruction.

The test-related signals are described in Chapter 5 of the
AMD-K5 Processor Technical Reference Manual. The signals
include the following:

■ FLUSH

■ FRCMC

■ IERR

■ INIT

■ PRDY

■ R/S

■ RESET

■ TCK

■ TDI

■ TDO

■ TMS

■ TRST

The sections that follow provide details on each of the test and
debug features.

Hardware Configuration Register (HWCR) 71

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

Hardware Configuration Register (HWCR)

The Hardware Configuration Register (HWCR) is a model-
specific register (MSR) that contains configuration bits that
enable cache, branch tracing, debug, and clock control func-
tions. The WRMSR and RDMSR instructions access the HWCR
when the ECX register contains the value 83h, as described on
page 34. Figure 4-1 and Table 4-1 show the format and fields of
the HWCR.

Figure 4-1. Hardware Configuration Register (HWCR)

Disable Data Cache DDC 7
Disable Instruction Cache DIC 6
Disable Branch Prediction DBP 5
Write Allocate Enable WA 4
Debug Control DC 3–1

000 Off
001 Enable branch trace usages

Disable Stopping Processor Clocks DSPC 0

8 7 6 5 4 3 2 1 031

D
I
C

D
D
C

D
B
P

D
C

D
S
P
C

Reserved

W
A

72 AMD-K5 Processor Test and Debug

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

Table 4-1. Hardware Configuration Register (HWCR) Fields

Bit Mnemonic Description Function

31–8 — — reserved

7 DDC Disable Data Cache
Disables data cache.

0 = enabled, 1 = disabled.

6 DIC Disable Instruction Cache
Disables instruction cache.

0 = enabled, 1 = disabled.

5 DBP Disable Branch Prediction
Disables branch prediction.

0 = enabled, 1 = disabled.

4 WA Write Allocate Enable
Enables write allocate.

0 = disabled, 1 = enabled

3–1 DC Debug Control

Debug control bits:

000 Off (disable HWCR debug control).

001 Enable branch-tracing messages. See “Branch
Tracing” on page 85.

010 reserved

011 reserved

100 reserved

101 reserved

110 reserved

111 reserved

0 DSPC Disable Stopping
Processor Clocks

Disables stopping of internal processor clocks in the
Halt and Stop Grant states.

0 = enabled, 1 = disabled.

Built-In Self-Test (BIST) 73

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

Built-In Self-Test (BIST)

The processor supports the following types of built-in self-test:

■ Normal BIST—A built-in self-test mode typically used to
test system functions after RESET

■ Test Access Port (TAP) BIST—A self-test mode started by the
TAP instruction, RUNBIST

All internal arrays except the TLB are tested in parallel by
hardware. The TLB is tested by microcode. Unlike the Pentium
processor, the AMD-K5 processor does not report parity errors
on IERR for every cache or TLB access. Instead, the AMD-K5
processor fully tests its caches during the BIST. EADS should
not be asserted during a BIST. The processor accesses the phys-
ical tag array during BISTs, and these accesses can conflict
with inquire cycles.

Normal BIST

The normal BIST is invoked if INIT is asserted at the falling
edge of RESET. The BIST runs tests on the internal hardware
that exercise the following resources:

■ Instruction cache:

• Linear tag directory

• Instruction array

• Physical tag directory

■ Data cache:

• Linear tag directory

• Data array

• Physical tag directory

■ Entry-point and instruction-decode PLAs

■ Microcode ROM

■ TLB

The BIST runs a linear feedback shift register (LFSR) signa-
ture test on the microcode ROM in parallel with a March C test
on the instruction cache, data cache, and physical tags. This is
followed by the March C test on the TLB arrays and then an

74 AMD-K5 Processor Test and Debug

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

LFSR signature test on the PLA, in that order. Upon comple-
tion of the PLA test, the processor transfers the test result
from an internal Hardware Debug Test (HDT) data register to
the EAX register for external access, resets the internal micro-
code, and begins normal code fetching.

The result of the BIST can be accessed by reading the lower 9
bits of the EAX register. If the EAX register value is
0000_0000h, the test completed successfully. If the value is not
zero, the non-zero bits indicate where the failure occurred, as
shown in Table 4-2. The processor continues with its normal
boot process after the BIST completes, whether the BIST
passed or failed.

Test Access Port (TAP) BIST

The TAP BIST performs all of the functions of the normal
BIST, up to and including the PLA signature test, in the exact
manner as the normal BIST. However, after the PLA test, the
test result is not transferred to the EAX register.

The TAP BIST is started by loading and executing the RUN-
BIST instruction in the test access port, as described in
“Boundary Scan Architecture Support” on page 87. When the
RUNBIST instruction is executed, the processor enters into a
reset mode that is identical to that entered when the RESET

Table 4-2. BIST Error Bit Definition in EAX Register

Bit Number
Bit Value

 0 1

31–9 No Error Always 0

8 No Error Data path

7 No Error Instruction-cache instructions

6 No Error Instruction-cache linear tags

5 No Error Data-cache linear tags

4 No Error PLA

3 No Error Microcode ROM

2 No Error Data-cache data

1 No Error Instruction cache physical tags

0 No Error Data-cache physical tags

Output-Float Test 75

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

signal is asserted. Upon completion of the TAP BIST, the result
remains in the BIST result register for shifting out through the
TDO signal. The TRST signal must be asserted or the TAP
instruction must be changed in order to exit TAP BIST and
return to normal operation.

Output-Float Test

The Output-Float Test mode is entered if FLUSH is asserted
before the falling edge of RESET. This causes the processor to
place all of its output and bidirectional signals in the high-
impedance state. In this isolated state, system board traces and
connections can be tested for integrity and driveability. The
Output-Float Test mode can only be exited by asserting RESET
again.

On the AMD-K5 and Pentium processors, FLUSH is an edge-
triggered interrupt. On the 486 processor, however, the signal
is a level-sensitive input.

Cache and TLB Testing

Cache and TLB testing is often done by the BIOS or operating
system during power-up. These arrays can be tested using the
Array Access Register (AAR). The following tests can be
performed:

■ Data Cache—8-Kbyte, 4-way, set associative

• Data array

• Linear-tag array

• Physical-tag array

■ Instruction Cache—16-Kbyte, 4-way, set associative

• Instruction array

• Linear-tag array

• Physical-tag array

• Valid-bit array

• Branch-prediction bit array

76 AMD-K5 Processor Test and Debug

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

■ 4-Kbyte TLB—128-entry, 4-way, set associative

• Linear-tag array

• Page array

■ 4-Mbyte TLB—4-entry, fully associative

• Linear-tag array

• Page array

Note: For more information on cache arrays, see Appendix A.

Array Access Register (AAR)

The 64-bit Array Access Register (AAR) is a model-specific
register (MSR) that contains a 32-bit array pointer, which iden-
tifies the array location to be tested, and 32 bits of array test
data to be read or written. The WRMSR and RDMSR instruc-
tions access the AAR when the ECX register contains the value
82h, as described on page 34. Figure 4-2 shows the format of
the AAR.

Figure 4-2. Array Access Register (AAR)

To read or write an array location, perform the following steps:

1. ECX—Enter 82h into ECX to access the 64-bit AAR.

2. EDX—Enter a 32-bit array pointer into EDX, as shown in
Figures 4-3 through 4-8 (top).

3. EAX—Read or write 32 bits of array test data to or from
EAX, as shown in Figures 4-3 through 4-8 (bottom).

MSR
82h

031

031

Array Pointer
(Contents of EDX)

Array Data
(Contents of EAX)

Cache and TLB Testing 77

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

Array Pointer

The array pointers entered in EDX (Figures 4-3 through 4-8,
top) specify particular array locations. For example, in the
data- and instruction-cache arrays, the way (or column) and set
(or index) in the array pointer specifies a cache line in the
4-way, set-associative array. The array pointers for data-cache
data and instruction-cache instructions also specify a dword
location within that cache line. In the data cache, this dword is
32 bits of data, in the instruction cache, this dword is two
instruction bytes plus their associated pre-decode bits. For the
4-Kbyte TLB, the way and set specify one of the 128 TLB
entries. In 4-Mbyte TLB, one of only four entries is specified.

Bits 7–0 of every array pointer encode the array ID, which iden-
tifies the array to be accessed, as shown in Table 4-3. To sim-
plify multiple accesses to an array, the contents of EDX are
retained after the RDMSR instruction executes (EDX is nor-
mally cleared after a RDMSR instruction).

Table 4-3. Array IDs in Array Pointers

Array Pointer
Bits 7–0 Accessed Array

E0h Data Cache: Data

E1h Data Cache: Linear Tag

ECh Data Cache: Physical Tag

E4h Instruction Cache: Instructions

E5h Instruction Cache: Linear Tag

EDh Instruction Cache: Physical Tag

E6h Instruction Cache: Valid Bits

E7h Instruction Cache: Branch-Prediction Bits

E8h 4-Kbyte TLB: Page

E9h 4-Kbyte TLB: Linear Tag

EAh 4-Mbyte TLB: Page

EBh 4-Mbyte TLB: Linear Tag

78 AMD-K5 Processor Test and Debug

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

Array Test Data

EAX specifies the test data to be read or written with the
RDMSR or WRMSR instruction (see Figures 4-3 through 4-8).
For example, in Figure 4-3 (top) the array pointer in EDX spec-
ifies a way and set within the data-cache linear tag array (E1h
in bits 7–0 of the array pointer) or the physical tag array (ECh
in bits 7–0 of the array pointer). If the linear tag array (E1h) is
accessed, the data read or written includes the tag and the sta-
tus bits. The details of the valid fields in EAX are shown in
Appendix A.

Figure 4-3. Test Formats: Data-Cache Tags

EDX: Array Pointer

031 30 29 28 27

0 0
Array ID

(E1h, ECh)Way 0 0 0 0 0 0 0 0 Set 0 0 0 0 0

EAX: Test Data

(E1h) Linear Tag

(ECh) Physical Tag

0

0 0 0 0 Valid Bits

0

0 0 0 0 0 0 0 0 0 Valid Bits

8 712131819

31 28 27

31 23 22

Cache and TLB Testing 79

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

Figure 4-4. Test Formats: Data-Cache Data

EDX: Array Pointer

031 30 29 28 27

0 0
Array ID
(E0h)Way 0 0 0 0 0 0 0 0 0 Set 0 0

EAX: Test Data

(E0h) Data

0

Valid Bits

71819

31

9 8101213

Dword

80 AMD-K5 Processor Test and Debug

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

Figure 4-5. Test Formats: Instruction-Cache Tags

EDX: Array Pointer

(E7h) Branch-Prediction Bits

8 7 01112192031 30 29 28 27

0 0
Array ID

(E5h, EDh, E6h, E7h)Way 0 0 0 0 0 0 0 0 Set 0 0 0 0

EAX: Test Data

(E5h) Linear Tag

(EDh) Physical Tag

(E6h) Valid Bits

0192031

0 0 0 0 0 0 0 0 0 0 0 0 Valid Bits

031

0 0 0 0 0 0 0 0 0 0 0 Valid Bits

2021

031

0 0 0 0 0 0 0 0 0 0 0 0 0 Valid Bits

1819

031

0 0 0 0 0 0 0 0 0 0 0 0 0 Valid Bits

1819

Cache and TLB Testing 81

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

Figure 4-6. Test Formats: Instruction-Cache Instructions

EDX: Array Pointer

031 30 29 28 27

0 0
Array ID
(E4h)Way 0 0 0 0 0 0 0 0 Set 0

EAX: Test Data

(E4h) Instruction Bytes

720 19 9 81112

Opcode
Bytes

0

0 0 0 0 0 0 Valid Bits

31 26 25

82 AMD-K5 Processor Test and Debug

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

Figure 4-7. Test Formats: 4-Kbyte TLB

EDX: Array Pointer

031 30 29 28 27

0 0
Array ID

(E8h, E9h)Way 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Set

EAX: Test Data

(E8h) 4-Kbyte Page and Status

(E9h) 4-Kbyte Linear Tag

0 0 0 0 0 0 0 0 0 0 Valid Bits

0

0 0 0 0 0 0 0 0 0 0 0 0 Valid Bits

8 71213

31

02131 22

1920

Cache and TLB Testing 83

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

Figure 4-8. Test Formats: 4-Mbyte TLB

EDX: Array Pointer

031 30 29 28 27

0 0
Array ID

(EAh, EBh)Entry 0

EAX: Test Data

(EAh) 4-Mbyte Page and Status

(EBh) 4-Mbyte Linear Tag

0 Valid Bits

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Valid Bits

8 7

31

0111231

1415

84 AMD-K5 Processor Test and Debug

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

Debug Registers

The processor implements the standard debug functions and
registers—DR7–DR6 and DR3–DR0 (often called DR7–DR0)—
that are available on the 486 processor, plus an I/O breakpoint
extension.

Standard Debug Functions

The debug functions make the processor’s state visible to
debug software through four debug registers (DR3–DR0) that
are accessed by MOV instructions. Accesses to memory
addresses can be set as breakpoints in the instruction flow by
invoking one of two debug exceptions (interrupt vectors 1 or 3)
during instruction or data accesses to the addresses. The debug
functions eliminate the need to embed breakpoints in code and
allow debugging of ROM as well as RAM.

For details on the standard 486 debug functions and registers,
see the AMD documentation on the Am486® processor or other
commercial x86 literature.

I/O Breakpoint Extension

The processor supports an I/O breakpoint extension for break-
points on I/O reads and writes. This function is enabled by set-
ting bit 3 of CR4, as described in “Control Register 4 (CR4)
Extensions” on page 2. When enabled, the I/O breakpoint func-
tion is invoked by the following:

■ Entering the I/O port number as a breakpoint address (zero-
extended to 32 bits) in one of the breakpoint registers,
DR3–DR0

■ Entering the bit pattern, 10b, in the corresponding 2-bit
R/W field in DR7

All data breakpoints on the AMD-K5 processor are precise,
including those encountered in repeated string operations,
which trap after completing the iteration on which the break-
point match occurs.

Branch Tracing 85

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

Enabled breakpoints slow the processor somewhat. When a
data breakpoint is enabled, the processor disables its dual-
issue load/store operations and performs only single-issue load/
store operations. When an instruction breakpoint is enabled,
instruction issue is completely serialized.

Debug Compatibility with Pentium Processor

The differences in debug functions between the AMD-K5 and
Pentium processors are described in Appendix A of the
AMD-K5 Processor Technical Reference Manual, order# 18524.

Branch Tracing

Branch tracing is enabled by writing bits 3–1 with 001b and set-
ting bit 5 to 1 (disabling branch prediction) in the Hardware
Configuration Register (HWCR), as described on page 71.
When thus enabled, the processor drives two branch-trace mes-
sage special bus cycles immediately after each taken branch
instruction is executed. Both special bus cycles have a BE7–
BE0 encoding of DFh (1101_1111b). The first special bus cycle
identifies the branch source, the second identifies the branch
target. The contents of the address and data bus during these
special bus cycles are shown in Table 4-4.

The branch-trace message special bus cycles are different for
the AMD-K5 and Pentium processors, although their BE7–BE0
encodings are the same.

86 AMD-K5 Processor Test and Debug

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

Functional-Redundancy Checking

When FRCMC is asserted at RESET, the processor enters
Functional-Redundancy Checking mode, as the checker, and
reports checking errors on the IERR output. If FRCMC is
negated at RESET, the processor operates normally, although
it also behaves as the master in a functional-redundancy check-
ing arrangement with a checker.

In the Functional-Redundancy Checking mode, two processors
have their signals tied together. One processor (the master)
operates normally. The other processor (the checker) has its
output and bidirectional signals (except for TDO and IERR)
floated to detect the state of the master’s signals. The master
controls instruction fetching and the checker mimics its behav-
ior by sampling the fetched instructions as they appear on the
bus. Both processors execute the instructions in lock step. The
checker compares the state of the master’s output and bidirec-
tional signals with the state that the checker itself would have
driven for the same instruction stream.

Table 4-4. Branch-Trace Message Special Bus Cycle Fields

Signals First Special Bus Cycle Second Special Bus Cycle

A31 0 = first special bus cycle (source) 1 = second special bus cycle (target)

A30–A29 not valid

Operating Mode of Target:

11 = Virtual-8086 Mode

10 = Protected Mode

01 = not valid

00 = Real Mode

A28 not valid

Default Operand Size of Target Segment:

1 = 32-bit

0 = 16-bit

A27–A20 0 0

A19–A4 Code Segment (CS) selector of Branch
Source. Code Segment (CS) selector of Branch Target.

A3 0 0

D31–D0 EIP of Branch Source. EIP of Branch Target.

Boundary Scan Architecture Support 87

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

Errors detected by the checker are reported on the IERR out-
put of the checker. If a mismatch occurs on such a comparison,
the checker asserts IERR for one clock, two clocks after the
detection of the error. Both the master and the checker con-
tinue running the checking program after an error occurs. No
action other than the assertion of IERR is taken by the proces-
sor. On the AMD-K5 processor, the IERR output is reserved
solely for functional-redundancy checking. No other errors are
reported on that output.

Functional-redundancy checking is typically implemented on
single-processor, fault-monitoring systems (which actually
have two processors). The master processor runs the opera-
tional programs and the checker processor is dedicated
entirely to constant checking. In this arrangement, the test of
accurate operation consists solely of reporting one or more
errors. The particular type of error or the instruction causing
an error is not reported. The arrangement works because the
processor is entirely deterministic. Speculative prefetching,
speculative execution, and cache replacement all occur in
identical ways and at identical times on both processors if their
signals are tied together so that they run the same program.

The Functional-Redundancy Checking mode can only be
exited by the assertion of RESET. Functional-redundancy
checking cannot be performed in the Hardware Debug Tool
(HDT) mode. The assertion of FRCMC is not recognized while
PRDY is asserted.

Boundary Scan Architecture Support

The AMD-K5 processor provides test features compatible with
the Standard Test Access Port (TAP) and Boundary Scan Test
Architecture as defined in the IEEE 1149.1-1990 JTAG Specifi-
cation. The subsections in this topic include:

■ Boundary Scan Test Functional Description

■ Boundary Scan Architecture

■ Registers

■ The Test Access Port (TAP) Controller

■ JTAG Register Organization

88 AMD-K5 Processor Test and Debug

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

■ JTAG Instructions

The external TAP interface consists of five pins:

■ TCK: The Test Clock input provides the clock for the JTAG
test logic.

■ TMS: The Test Mode Select input enables TAP controller
operations.

■ TDI: The Test Data Input provides serial input to registers.

■ TDO: The Test Data Output provides serial output from the
registers; the signal is tri-stated except when in the Shift-
DR or Shift-IR controller states.

■ TRST: The TAP Controller Reset input initializes the TAP
controller when asserted Low.

The internal JTAG logic contains the elements listed below:

■ The Test Access Port (TAP) Controller—Decodes the inputs
on the Test Mode Select (TMS) line to control test opera-
tions. The TAP is a general-purpose port that provides
access to the test support functions built into the AMD-K5
processor.

■ Instruction Register—Accepts instructions from the Test
Data Input (TDI) pin. The instruction codes select the spe-
cific test or debug operation to be performed or the test
data register to be accessed.

■ Implemented Test Data Registers—Boundary Scan Regis-
ter, Device Identification Register, and Bypass Register.
See “JTAG Register Organization” on page 91 for more
information.

Note: See Table 4-8 for more information.

Boundary Scan Test Functional Description

The boundary scan testing uses a shift register, contained in a
boundary scan cell, located between the core logic and the I/O
buffers adjacent to each component pin. Signals at each input
and output pin are controlled and observed using scan testing
techniques. The boundary scan cells are interconnected to
form a shift register chain. This register chain, called a Bound-
ary Scan Register (BSR), constructs a serial path surrounding
the core logic. This enables test data to be shifted through the

Boundary Scan Architecture Support 89

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

boundary scan path. When the system enters the Boundary
Scan Test mode, the BSR chain is directed by a test program to
pass data along the shift register path.

If all the components used to construct a circuit or PCB contain
a boundary scan cell architecture, the resulting serial path can
be used to perform component interconnect testing.

Boundary Scan Architecture

Boundary Scan architecture has four basic elements:

■ Test Access Port (TAP)

■ TAP Controller

■ Instruction Register (IR). See“Instruction Register” on
page 90 for more information.

■ Test Data Registers. See “Registers” on page 90 for more
information.

The Instruction and Test Data Registers have separate shift
register access paths connected in parallel between the Test
Data In (TDI) and Test Data Out (TDO) pins. Path selection
and boundary scan cell operation is controlled by the TAP Con-
troller. The controller initializes at start-up, but the Test Reset
(TRST) input can asynchronously reset the test logic, if
required.

All system integrated circuit (IC) I/O signals are shifted in and
out through the serial Test Data In and Test Data Out (TDI/
TDO) path. The TAP Controller is enabled by the Test Mode
Select (TMS) input. The Test Clock (TCK), obtained from a sys-
tem level bus or Automatic Test Equipment (ATE), supplies
the timing signal for data transfer and system architecture
operation.

The dedicated TCK input enables the serial test data path
between components to be used independently of component-
specific system clocks. TCK also ensures that test data can be
moved to or from a chip without changing the state of the on-
chip system logic.

The TCK signal is driven by an independent 50% duty cycle
clock (generated by the Automatic Test Equipment). If the
TCK must be stopped (for example, if the ATE must retrieve

90 AMD-K5 Processor Test and Debug

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

data from external memory and is unable to keep the clock
running), it can be stopped at 0 or 1 indefinitely, without caus-
ing any change to the test logic state.

To ensure race-free operation, changes on the TAP’s TMS
input are clocked into the test logic. Changes on the TAP’s TDI
input are clocked into the selected register (Instruction or Test
Data Register) on the rising edge of TCK. The contents of the
selected register are shifted out onto the TAP output (TDO) on
the falling edge of TCK.

Registers

Boundary scan architectural elements include an Instruction
Register (IR) and a group of Test Data Registers (TDRs). These
registers have separate shift-register-based serial access paths,
connected in parallel between the TDI and TDO pins.

The TDRs are internal registers used by the Boundary Scan
Architecture to process the test data. Each Test Data Register
is addressed by an instruction scanned into the Instruction
Register. The AMD-K5 processor includes the following TDRs:

■ Bypass Register (BR). See “Bypass Register” on page 92.

■ Boundary Scan Register (BSR). See “Boundary Scan Regis-
ter” on page 91.

■ Device Identification Register (DIR). See “Device Identifi-
cation Register” on page 91.

■ Built-In Self-Test Result Register (BISTRR). See
“RUNBIST” on page 95.

Instruction Register The 5-bit Instruction Register (IR) is a serial-in parallel-out
register that includes five shift register-based cells for holding
instruction data. The instruction determines which test to run,
which data register to access, or both. When the TAP controller
enters the Capture IR state, the processor loads the IDCODE
instruction in the IR. Executing Shift IR starts instructions
shifting into the instruction register on the rising edge of TCK.
Executing Update-IR loads the instruction from the serial shift
register to the parallel register.

The TAP controller is a synchronous, finite state machine that
controls the test and debug logic sequence of operations. The
TAP controller changes state in response to the rising edge of

Boundary Scan Architecture Support 91

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

TCK and defaults to the test logic reset state at power-up.
Reinitialization to the test logic reset state is accomplished by
holding the TMS pin High for five TCK periods.

JTAG Register Organization

All registers in the JTAG logic consist of the following two reg-
ister ranks:

■ A shift register

■ A parallel output register fed by the shift register

Parallel input data is loaded into the shift register when the
TAP controller exits the Capture state (Capture DR or Capture
IR). The shift register then shifts data from TDI to TDO when
in the Shift state (Shift DR or Shift IR). The output register
holds the current data while new data is shifted into the shift
register. The contents of the output register are updated when
the TAP controller exits the Update state (Update DR or
Update IR). The three registers described in this section are:

■ Boundary Scan Register

■ Device Identification Register

■ Bypass Register

Boundary Scan
Register

The Boundary Scan Register (BSR) is a 261-bit shift register
with cells connected to all input and output pins and contain-
ing cells for tri-state I/O control. This enables serial data to be
loaded into or read from the processor boundary scan area.

Output cells determine the value of the signal driven on the
corresponding pin. Input cells only capture data. The EXTEST
and SAMPLE/PRELOAD instructions can operate the BSR.

Device Identification
Register

The format of the Device Identification Register (DIR) is
shown in Table 4-5. The fields include the following values:

■ Version Number—This is incremented by AMD manufactur-
ing for each major revision of silicon.

■ Bond Option—The two bits of the bond option depend on
how the part is bonded at the factory.

■ Part Number—This identifies the specific processor model.

92 AMD-K5 Processor Test and Debug

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

Manufacturer—This is actually only 11 bits (11–1). The least-
significant bit, bit 0, is always set to 1, as specified by the IEEE
standard.

■ Bypass Register

The Bypass Register, a 1-bit shift register, provides the short-
est path between TDI and TDO. When the component is not
performing a test operation, this path is selected to allow trans-
fer of test data to and from other components on the board.
The Bypass Register is also selected during the HIGHZ, ALL1,
ALL0, and BYPASS tests and for any unused instruction codes.

Public Instructions

The processor supports all three IEEE-mandatory instructions
(BYPASS, SAMPLE/PRELOAD, EXTEST), three IEEE-
optional instructions (IDCODE, HIGHZ, RUNBIST), and three
instructions unique to the AMD-K5 processor (ALL1, ALL0,
USEHDT). Table 4-6 shows the complete set of public TAP
instructions supported by the processor. The processor also
implements several private manufacturing test instructions.

The IEEE standard describes the mandatory and optional
instructions. The ALL1 and ALL0 instructions simply force all
outputs and bidirectionals High or Low. The USEHDT instruc-
tion is described on page 112. Any instruction encodings not
shown in Table 4-6 select the BYPASS instruction.

Table 4-5. Test Access Port (TAP) ID Code

Version
(Bits 31–28)

Bond Option
(Bit 27)

Unused
(Bits 26–24)

Part Number
(Bits 23–12)

Manufacturer
(Bits 11–1)

LSB
(Bit 0)

Xh Xb 000b

50Xh = Model 0
51Xh = Model 1
52Xh = Model 2
53Xh = Model 3

00000000001b 1b

Boundary Scan Architecture Support 93

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

EXTEST The EXTEST instruction permits circuits outside the compo-
nent package to be tested. A common use of the EXTEST
instruction is the testing of board interconnects. Boundary
scan register cells at output pins are used to apply test stimuli,
while those at input pins capture test results. Dependent on
the value loaded into their control cell in the boundary scan
register, the I/O pins are established as input or output. Inputs
to the core logic retain the logic value set prior to execution of
the EXTEST instruction. Upon exiting EXTEST, input pins are
reconnected to the package pins.

SAMPLE/PRELOAD There are two functions performed by the SAMPLE/PRELOAD
instruction, as follows:

■ Capturing an instantaneous picture of the normal operation
of the device being tested. This function occurs if the
instruction is executed while the TAP controller is in the
Capture DR state and causes the Boundary Scan Register to
sample the values present at the device pins.

■ Preloading data to the device pins to be driven to the board
by the EXTEST instruction. This function occurs if the
instruction is executed while the TAP controller is in the
Update DR state and causes data to be preloaded to the
device pins from the Boundary Scan Register.

Table 4-6. Public TAP Instructions

Instruction Encoding Register Description

EXTEST 00000 BSR As defined by the IEEE standard

SAMPLE/ PRELOAD 00001 BSR As defined by the IEEE standard

IDCODE 00010 DIR As defined by the IEEE standard

HIGHZ 00011 BR As defined by the IEEE standard

ALL1 00100 BR Forces all outputs and bidirectionals High

ALL0 00101 BR Forces all outputs and bidirectionals Low

USEHDT 00110 HDTR Accesses the Hardware Debug Tool (HDT)1
See page 112

RUNBIST 00111 BISTRR As defined by the IEEE standard

BYPASS 11111 BR As defined by the IEEE standard

BYPASS undefined BR Undefined instruction encodings select the BYPASS
instruction

Notes:
1. Documentation on the Hardware Debug Tool (HDT) is available from AMD under a nondisclosure agreement.

94 AMD-K5 Processor Test and Debug

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

IDCODE The execution of the IDCODE instruction connects the device
identification register between TDI and TDO. Upon such con-
nection, the device identification code can be shifted out of the
register.

HIGHZ This instruction forces all output and bidirectional pins into a
tri-state condition. When this instruction is selected, the
bypass register is selected for shifting between TDI and TDO.
A signal called HIZEXT is responsible for forcing the tri-state
to occur. This signal is generated in the TAP block, underneath
JTAG_BIST, and goes to the PAD_TOP block.

ALL1 This instruction forces all output and bidirectional pins to a
High logic level.

The ALL1 instruction, like the HIGHZ instruction selects the
bypass register for shifting between TDI and TDO. There is a
signal called ALL1 that is responsible for forcing the pins to a
High state. This signal is generated in the TAP block under-
neath JTAG_BIST and goes to the PAD_TOP block. In the
PAD_TOP block, this signal goes to boundary scan cells called
BSLCD_OUT. The DOUT pins of the BSLCD_OUT cells are
forced High when ALL1 is High. The SELPDR signal selects
the boundary scan cells as the source for driving the outputs, if
the SELPDR signal is High. The SELPDR signal is also gener-
ated in the TAP block underneath JTAG_BIST and goes to the
PAD_TOP block.

ALL0 This instruction forces all output and bidirectional pins to a
Low logic level.

The ALL0 instruction, like the HIGHZ instruction, selects the
bypass register for shifting between TDI and TDO. There is a
signal called ALL0 that is responsible for forcing the pins to a
Low state. This signal is generated in the TAP block under-
neath JTAG_BIST and goes to the PAD_TOP block. In the
PAD_TOP block, this signal goes to boundary scan cells called
BSLCD_OUT. The DOUT pins of the BSLCD_OUT cells are
forced Low when ALL0 is High. The SELPDR signal selects the
boundary scan cells as the source for driving the outputs, if the
SELPDR signal is High. The SELPDR signal is also generated
in the TAP block underneath JTAG_BIST and goes to the
PAD_TOP block.

Boundary Scan Architecture Support 95

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

RUNBIST This version of BIST is similar to the normal BIST mode, except
that it is started by shifting in a TAP instruction. This instruc-
tion should behave according to the rules of the IEEE 1149.1
definition of RUNBIST.

When the RUNBIST instruction is updated into the instruction
register, a signal from the TAP_RTL block called JTGBIST is
asserted High. This signal goes to the PAD_TOP and TESTC-
TRL blocks. In PAD_TOP, this signal goes to the BRNBIST
block and causes both INIT_SAMP and RUNBIST to be
asserted. To the rest of the chip, it looks like a normal BIST
operation is taking place. The JTGBIST signal also goes to the
TESTCTRL block so that the BIST controller knows that the
BIST operation was initiated from the TAP controller. This is
necessary because the BIST results do not get transferred to
the EAX register in this mode of operation. The JTAG_BIST
block also asserts the RESET_TAP pin to the CLOCKS block
for 15 system clock cycles, in order to fake an external reset.

The pattern that is shifted into the boundary scan ring, prior to
the selection of the RUNBIST instruction, is driven at output
and bidirectional cells during the duration of the instruction.
The results of the execution of RUNBIST are saved in the BIST
results register, which is 9 bits long and looks like the least sig-
nificant 9 bits in the EAX register. This register is selected for
shifting between TDI and TDO and can be shifted out after the
completion of BIST. Bit 0 (ICACHE data status) is shifted out
first. The BIST results should be independent of signals
received at non-clock input pins (except for RESET).

BYPASS The execution of the BYPASS instruction connects the bypass
register between TDI and TDO, bypassing the test logic.
Because of the pull-up resistor on the TDI input, the bypass
register is selected if there is an open circuit in the board-level
test data path following an instruction scan cycle. Any unused
instruction bit patterns cause the bypass register to be
selected for shifting between TDI and TDO.

96 AMD-K5 Processor Test and Debug

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

The control bits listed in Table 4-8 have the characteristics
described in Table 4-7.

Table 4-7. Control Bit Definitions

Bit Definition

144
Controls the direction of the Data bus (D63–D0). If the bit is set to 1, the
bus acts as an input. If the bit is set to 0, the bus acts as an output.

213
Controls the direction of the Address bus (A31–A3) and Address Parity
(AP). If the bit is set to 1, the bus acts as an input. If the bit is set to 0, the
bus acts as an output.

257
Controls pins that can be tri-stated, but these pins never act as inputs. If
the bit is set to 1, the pin is tri-stated. If the bit is set to 0, the pin acts as
an output.

Table 4-8. Boundary Scan Register Bit Definitions (Model 0)

Bit Pin Name Comments

0 DP7 Output Cell: Controlled by bit 144

1 DP7 Input Cell

2 D63 Output Cell: Controlled by bit 144

3 D63 Input Cell

4 D62 Output Cell: Controlled by bit 144

5 D62 Input Cell

6 D61 Output Cell: Controlled by bit 144

7 D61 Input Cell

8 D60 Output Cell: Controlled by bit 144

9 D60 Input Cell

10 D59 Output Cell: Controlled by bit 144

11 D59 Input Cell

12 D58 Output Cell: Controlled by bit 144

13 D58 Input Cell

14 D57 Output Cell: Controlled by bit 144

15 D57 Input Cell

16 D56 Output Cell: Controlled by bit 144

17 D56 Input Cell

18 DP6 Output Cell: Controlled by bit 144

19 DP6 Input Cell

20 D55 Output Cell: Controlled by bit 144

Boundary Scan Architecture Support 97

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

21 D55 Input Cell

22 D54 Output Cell: Controlled by bit 144

23 D54 Input Cell

24 D53 Output Cell: Controlled by bit 144

25 D53 Input Cell

26 D52 Output Cell: Controlled by bit 144

27 D52 Input Cell

28 D51 Output Cell: Controlled by bit 144

29 D51 Input Cell

30 D50 Output Cell: Controlled by bit 144

31 D50 Input Cell

32 D49 Output Cell: Controlled by bit 144

33 D49 Input Cell

34 D48 Output Cell: Controlled by bit 144

35 D48 Input Cell

36 DP5 Output Cell: Controlled by bit 144

37 DP5 Input Cell

38 D47 Output Cell: Controlled by bit 144

39 D47 Input Cell

40 D46 Output Cell: Controlled by bit 144

41 D46 Input Cell

42 D45 Output Cell: Controlled by bit 144

43 D45 Input Cell

44 D44 Output Cell: Controlled by bit 144

45 D44 Input Cell

46 D43 Output Cell: Controlled by bit 144

47 D43 Input Cell

48 D42 Output Cell: Controlled by bit 144

49 D42 Input Cell

50 D41 Output Cell: Controlled by bit 144

51 D41 Input Cell

52 D40 Output Cell: Controlled by bit 144

53 D40 Input Cell

54 DP4 Output Cell: Controlled by bit 144

Table 4-8. Boundary Scan Register Bit Definitions (Model 0) (continued)

Bit Pin Name Comments

98 AMD-K5 Processor Test and Debug

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

55 DP4 Input Cell

56 D39 Output Cell: Controlled by bit 144

57 D39 Input Cell

58 D38 Output Cell: Controlled by bit 144

59 D38 Input Cell

60 D37 Output Cell: Controlled by bit 144

61 D37 Input Cell

62 D36 Output Cell: Controlled by bit 144

63 D36 Input Cell

64 D35 Output Cell: Controlled by bit 144

65 D35 Input Cell

66 D34 Output Cell: Controlled by bit 144

67 D34 Input Cell

68 D33 Output Cell: Controlled by bit 144

69 D33 Input Cell

70 D32 Output Cell: Controlled by bit 144

71 D32 Input Cell

72 DP3 Output Cell: Controlled by bit 144

73 DP3 Input Cell

74 D31 Output Cell: Controlled by bit 144

75 D31 Input Cell

76 D30 Output Cell: Controlled by bit 144

77 D30 Input Cell

78 D29 Output Cell: Controlled by bit 144

79 D29 Input Cell

80 D28 Output Cell: Controlled by bit 144

81 D28 Input Cell

82 D27 Output Cell: Controlled by bit 144

83 D27 Input Cell

84 D26 Output Cell: Controlled by bit 144

85 D26 Input Cell

86 D25 Output Cell: Controlled by bit 144

87 D25 Input Cell

88 D24 Output Cell: Controlled by bit 144

Table 4-8. Boundary Scan Register Bit Definitions (Model 0) (continued)

Bit Pin Name Comments

Boundary Scan Architecture Support 99

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

89 D24 Input Cell

90 DP2 Output Cell: Controlled by bit 144

91 DP2 Input Cell

92 D23 Output Cell: Controlled by bit 144

93 D23 Input Cell

94 D22 Output Cell: Controlled by bit 144

95 D22 Input Cell

96 D21 Output Cell: Controlled by bit 144

97 D21 Input Cell

98 D20 Output Cell: Controlled by bit 144

99 D20 Input Cell

100 D19 Output Cell: Controlled by bit 144

101 D19 Input Cell

102 D18 Output Cell: Controlled by bit 144

103 D18 Input Cell

104 D17 Output Cell: Controlled by bit 144

105 D17 Input Cell

106 D16 Output Cell: Controlled by bit 144

107 D16 Input Cell

108 DP1 Output Cell: Controlled by bit 144

109 DP1 Input Cell

110 D15 Output Cell: Controlled by bit 144

111 D15 Input Cell

112 D14 Output Cell: Controlled by bit 144

113 D14 Input Cell

114 D13 Output Cell: Controlled by bit 144

115 D13 Input Cell

116 D12 Output Cell: Controlled by bit 144

117 D12 Input Cell

118 D11 Output Cell: Controlled by bit 144

119 D11 Input Cell

120 D10 Output Cell: Controlled by bit 144

121 D10 Input Cell

122 D9 Output Cell: Controlled by bit 144

Table 4-8. Boundary Scan Register Bit Definitions (Model 0) (continued)

Bit Pin Name Comments

100 AMD-K5 Processor Test and Debug

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

123 D9 Input Cell

124 D8 Output Cell: Controlled by bit 144

125 D8 Input Cell

126 DP Output Cell: Controlled by bit 144

127 DP Input Cell

128 D7 Output Cell: Controlled by bit 144

129 D7 Input Cell

130 D6 Output Cell: Controlled by bit 144

131 D6 Input Cell

132 D5 Output Cell: Controlled by bit 144

133 D5 Input Cell

134 D4 Output Cell: Controlled by bit 144

135 D4 Input Cell

136 D3 Output Cell: Controlled by bit 144

137 D3 Input Cell

138 D2 Output Cell: Controlled by bit 144

139 D2 Input Cell

140 D1 Output Cell: Controlled by bit 144

141 D1 Input Cell

142 D0 Output Cell: Controlled by bit 144

143 D0 Input Cell

144 Control Direction Control. See Table 4-7.

145 STPLK Input Cell

146 FRCMC Input Cell

147 PEN Input Cell

148 IGNNE Input Cell

149 BF Input Cell

150 INIT Input Cell

151 SMI Input Cell

152 R/S Input Cell

153 NMI Input Cell

154 INTR Input Cell

155 A21 Output Cell: Controlled by bit 213

156 A21 Input Cell

Table 4-8. Boundary Scan Register Bit Definitions (Model 0) (continued)

Bit Pin Name Comments

Boundary Scan Architecture Support 101

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

157 A22 Output Cell: Controlled by bit 213

158 A22 Input Cell

159 A23 Output Cell: Controlled by bit 213

160 A23 Input Cell

161 A24 Output Cell: Controlled by bit 213

162 A24 Input Cell

163 A25 Output Cell: Controlled by bit 213

164 A25 Input Cell

165 A26 Output Cell: Controlled by bit 213

166 A26 Input Cell

167 A27 Output Cell: Controlled by bit 213

168 A27 Input Cell

169 A28 Output Cell: Controlled by bit 213

170 A28 Input Cell

171 A29 Output Cell: Controlled by bit 213

172 A29 Input Cell

173 A30 Output Cell: Controlled by bit 213

174 A30 Input Cell

175 A31 Output Cell: Controlled by bit 213

176 A31 Input Cell

177 A3 Output Cell: Controlled by bit 213

178 A3 Input Cell

179 A4 Output Cell: Controlled by bit 213

180 A4 Input Cell

181 A5 Output Cell: Controlled by bit 213

182 A5 Input Cell

183 A6 Output Cell: Controlled by bit 213

184 A6 Input Cell

185 A7 Output Cell: Controlled by bit 213

186 A7 Input Cell

187 A8 Output Cell: Controlled by bit 213

188 A8 Input Cell

189 A9 Output Cell: Controlled by bit 213

190 A9 Input Cell

Table 4-8. Boundary Scan Register Bit Definitions (Model 0) (continued)

Bit Pin Name Comments

102 AMD-K5 Processor Test and Debug

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

191 A10 Output Cell: Controlled by bit 213

192 A10 Input Cell

193 A11 Output Cell: Controlled by bit 213

194 A11 Input Cell

195 A12 Output Cell: Controlled by bit 213

196 A12 Input Cell

197 A13 Output Cell: Controlled by bit 213

198 A13 Input Cell

199 A14 Output Cell: Controlled by bit 213

200 A14 Input Cell

201 A15 Output Cell: Controlled by bit 213

202 A15 Input Cell

203 A16 Output Cell: Controlled by bit 213

204 A16 Input Cell

205 A17 Output Cell: Controlled by bit 213

206 A17 Input Cell

207 A18 Output Cell: Controlled by bit 213

208 A18 Input Cell

209 A19 Output Cell: Controlled by bit 213

210 A19 Input Cell

211 A20 Output Cell: Controlled by bit 213

212 A20 Input Cell

213 Control Direction Control. See Table 4-7.

214 SCYC Output Cell: Controlled by bit 257

215 RESET Input Cell

216 BE7 Output Cell: Controlled by bit 257

217 BE6 Output Cell: Controlled by bit 257

218 BE5 Output Cell: Controlled by bit 257

219 BE4 Output Cell: Controlled by bit 257

220 BE3 Output Cell: Controlled by bit 257

221 BE2 Output Cell: Controlled by bit 257

222 BE1 Output Cell: Controlled by bit 257

223 BE0 Output Cell: Controlled by bit 257

224 W/R Output Cell: Controlled by bit 257

Table 4-8. Boundary Scan Register Bit Definitions (Model 0) (continued)

Bit Pin Name Comments

Boundary Scan Architecture Support 103

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

225 HIT Output Cell

226 CLK Clock

227 ADSC Output Cell: Controlled by bit 257

228 ADS Output Cell: Controlled by bit 257

229 CACHE Output Cell: Controlled by bit 257

230 BRDYC Input Cell

231 BRDY Input Cell

232 EADS Input Cell

233 PWT Output Cell: Controlled by bit 257

234 LOCK Output Cell: Controlled by bit 257

235 PCD Output Cell: Controlled by bit 257

236 WB/WT Input Cell

237 HITM Output Cell

238 KEN Input Cell

239 AHOLD Input Cell

240 BOFF Input Cell

241 HLDA Output Cell

242 HOLD Input Cell

243 NA Input Cell

244 EWBE Input Cell

245 M/IO Output Cell: Controlled by bit 257

246 FLUSH Input Cell

247 A20M Input Cell

248 BUSCHK Input Cell

249 AP Output Cell: Controlled by bit 213

250 AP Input Cell

251 D/C Output Cell: Controlled by bit 257

252 BREQ Output Cell

253 SMIACT Output Cell

254 PCHK Output Cell

255 APCHK Output Cell

256 PRDY Output Cell

257 Control Direction Control. See Table 4-7.

258 INV Input Cell

Table 4-8. Boundary Scan Register Bit Definitions (Model 0) (continued)

Bit Pin Name Comments

104 AMD-K5 Processor Test and Debug

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

259 FERR Output Cell

260 IERR Output Cell

Table 4-9. Boundary Scan Register Bit Definitions (Models 1, 2, and 3)

Bit Pin Name Comments

0 DP7 Output Cell: Controlled by bit 144

1 DP7 Input Cell

2 D63 Output Cell: Controlled by bit 144

3 D63 Input Cell

4 D62 Output Cell: Controlled by bit 144

5 D62 Input Cell

6 D61 Output Cell: Controlled by bit 144

7 D61 Input Cell

8 D60 Output Cell: Controlled by bit 144

9 D60 Input Cell

10 D59 Output Cell: Controlled by bit 144

11 D59 Input Cell

12 D58 Output Cell: Controlled by bit 144

13 D58 Input Cell

14 D57 Output Cell: Controlled by bit 144

15 D57 Input Cell

16 D56 Output Cell: Controlled by bit 144

17 D56 Input Cell

18 DP6 Output Cell: Controlled by bit 144

19 DP6 Input Cell

20 D55 Output Cell: Controlled by bit 144

21 D55 Input Cell

22 D54 Output Cell: Controlled by bit 144

23 D54 Input Cell

24 D53 Output Cell: Controlled by bit 144

25 D53 Input Cell

26 D52 Output Cell: Controlled by bit 144

27 D52 Input Cell

Table 4-8. Boundary Scan Register Bit Definitions (Model 0) (continued)

Bit Pin Name Comments

Boundary Scan Architecture Support 105

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

28 D51 Output Cell: Controlled by bit 144

29 D51 Input Cell

30 D50 Output Cell: Controlled by bit 144

31 D50 Input Cell

32 D49 Output Cell: Controlled by bit 144

33 D49 Input Cell

34 D48 Output Cell: Controlled by bit 144

35 D48 Input Cell

36 DP5 Output Cell: Controlled by bit 144

37 DP5 Input Cell

38 D47 Output Cell: Controlled by bit 144

39 D47 Input Cell

40 D46 Output Cell: Controlled by bit 144

41 D46 Input Cell

42 D45 Output Cell: Controlled by bit 144

43 D45 Input Cell

44 D44 Output Cell: Controlled by bit 144

45 D44 Input Cell

46 D43 Output Cell: Controlled by bit 144

47 D43 Input Cell

48 D42 Output Cell: Controlled by bit 144

49 D42 Input Cell

50 D41 Output Cell: Controlled by bit 144

51 D41 Input Cell

52 D40 Output Cell: Controlled by bit 144

53 D40 Input Cell

54 DP4 Output Cell: Controlled by bit 144

55 DP4 Input Cell

56 D39 Output Cell: Controlled by bit 144

57 D39 Input Cell

58 D38 Output Cell: Controlled by bit 144

59 D38 Input Cell

60 D37 Output Cell: Controlled by bit 144

61 D37 Input Cell

Table 4-9. Boundary Scan Register Bit Definitions (Models 1, 2, and 3)

Bit Pin Name Comments

106 AMD-K5 Processor Test and Debug

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

62 D36 Output Cell: Controlled by bit 144

63 D36 Input Cell

64 D35 Output Cell: Controlled by bit 144

65 D35 Input Cell

66 D34 Output Cell: Controlled by bit 144

67 D34 Input Cell

68 D33 Output Cell: Controlled by bit 144

69 D33 Input Cell

70 D32 Output Cell: Controlled by bit 144

71 D32 Input Cell

72 DP3 Output Cell: Controlled by bit 144

73 DP3 Input Cell

74 D31 Output Cell: Controlled by bit 144

75 D31 Input Cell

76 D30 Output Cell: Controlled by bit 144

77 D30 Input Cell

78 D29 Output Cell: Controlled by bit 144

79 D29 Input Cell

80 D28 Output Cell: Controlled by bit 144

81 D28 Input Cell

82 D27 Output Cell: Controlled by bit 144

83 D27 Input Cell

84 D26 Output Cell: Controlled by bit 144

85 D26 Input Cell

86 D25 Output Cell: Controlled by bit 144

87 D25 Input Cell

88 D24 Output Cell: Controlled by bit 144

89 D24 Input Cell

90 DP2 Output Cell: Controlled by bit 144

91 DP2 Input Cell

92 D23 Output Cell: Controlled by bit 144

93 D23 Input Cell

94 D22 Output Cell: Controlled by bit 144

95 D22 Input Cell

Table 4-9. Boundary Scan Register Bit Definitions (Models 1, 2, and 3)

Bit Pin Name Comments

Boundary Scan Architecture Support 107

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

96 D21 Output Cell: Controlled by bit 144

97 D21 Input Cell

98 D20 Output Cell: Controlled by bit 144

99 D20 Input Cell

100 D19 Output Cell: Controlled by bit 144

101 D19 Input Cell

102 D18 Output Cell: Controlled by bit 144

103 D18 Input Cell

104 D17 Output Cell: Controlled by bit 144

105 D17 Input Cell

106 D16 Output Cell: Controlled by bit 144

107 D16 Input Cell

108 DP1 Output Cell: Controlled by bit 144

109 DP1 Input Cell

110 D15 Output Cell: Controlled by bit 144

111 D15 Input Cell

112 D14 Output Cell: Controlled by bit 144

113 D14 Input Cell

114 D13 Output Cell: Controlled by bit 144

115 D13 Input Cell

116 D12 Output Cell: Controlled by bit 144

117 D12 Input Cell

118 D11 Output Cell: Controlled by bit 144

119 D11 Input Cell

120 D10 Output Cell: Controlled by bit 144

121 D10 Input Cell

122 D9 Output Cell: Controlled by bit 144

123 D9 Input Cell

124 D8 Output Cell: Controlled by bit 144

125 D8 Input Cell

126 DP Output Cell: Controlled by bit 144

127 DP Input Cell

128 D7 Output Cell: Controlled by bit 144

129 D7 Input Cell

Table 4-9. Boundary Scan Register Bit Definitions (Models 1, 2, and 3)

Bit Pin Name Comments

108 AMD-K5 Processor Test and Debug

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

130 D6 Output Cell: Controlled by bit 144

131 D6 Input Cell

132 D5 Output Cell: Controlled by bit 144

133 D5 Input Cell

134 D4 Output Cell: Controlled by bit 144

135 D4 Input Cell

136 D3 Output Cell: Controlled by bit 144

137 D3 Input Cell

138 D2 Output Cell: Controlled by bit 144

139 D2 Input Cell

140 D1 Output Cell: Controlled by bit 144

141 D1 Input Cell

142 D0 Output Cell: Controlled by bit 144

143 D0 Input Cell

144 Control Direction Control. See Table 4-7.

145 STPLK Input Cell

146 BF1 Input Cell

147 FRCMC Input Cell

148 PEN Input Cell

149 IGNNE Input Cell

150 BF0 Input Cell

151 INIT Input Cell

152 SMI Input Cell

153 R/S Input Cell

154 NMI Input Cell

155 INTR Input Cell

156 A21 Output Cell: Controlled by bit 213

157 A21 Input Cell

158 A22 Output Cell: Controlled by bit 213

159 A22 Input Cell

160 A23 Output Cell: Controlled by bit 213

161 A23 Input Cell

162 A24 Output Cell: Controlled by bit 213

163 A24 Input Cell

Table 4-9. Boundary Scan Register Bit Definitions (Models 1, 2, and 3)

Bit Pin Name Comments

Boundary Scan Architecture Support 109

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

164 A25 Output Cell: Controlled by bit 213

165 A25 Input Cell

166 A26 Output Cell: Controlled by bit 213

167 A26 Input Cell

168 A27 Output Cell: Controlled by bit 213

169 A27 Input Cell

170 A28 Output Cell: Controlled by bit 213

171 A28 Input Cell

172 A29 Output Cell: Controlled by bit 213

173 A29 Input Cell

174 A30 Output Cell: Controlled by bit 213

175 A30 Input Cell

176 A31 Output Cell: Controlled by bit 213

177 A31 Input Cell

178 A3 Output Cell: Controlled by bit 213

179 A3 Input Cell

180 A4 Output Cell: Controlled by bit 213

181 A4 Input Cell

182 A5 Output Cell: Controlled by bit 213

183 A5 Input Cell

184 A6 Output Cell: Controlled by bit 213

185 A6 Input Cell

186 A7 Output Cell: Controlled by bit 213

187 A7 Input Cell

188 A8 Output Cell: Controlled by bit 213

189 A8 Input Cell

190 A9 Output Cell: Controlled by bit 213

191 A9 Input Cell

192 A10 Output Cell: Controlled by bit 213

193 A10 Input Cell

194 A11 Output Cell: Controlled by bit 213

195 A11 Input Cell

196 A12 Output Cell: Controlled by bit 213

197 A12 Input Cell

Table 4-9. Boundary Scan Register Bit Definitions (Models 1, 2, and 3)

Bit Pin Name Comments

110 AMD-K5 Processor Test and Debug

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

198 A13 Output Cell: Controlled by bit 213

199 A13 Input Cell

200 A14 Output Cell: Controlled by bit 213

201 A14 Input Cell

202 A15 Output Cell: Controlled by bit 213

203 A15 Input Cell

204 A16 Output Cell: Controlled by bit 213

205 A16 Input Cell

206 A17 Output Cell: Controlled by bit 213

207 A17 Input Cell

208 A18 Output Cell: Controlled by bit 213

209 A18 Input Cell

210 A19 Output Cell: Controlled by bit 213

211 A19 Input Cell

212 A20 Output Cell: Controlled by bit 213

213 A20 Input Cell

214 Control Direction Control. See Table 4-7.

215 SCYC Output Cell: Controlled by bit 257

216 RESET Input Cell

217 BE7 Output Cell: Controlled by bit 257

218 BE6 Output Cell: Controlled by bit 257

219 BE5 Output Cell: Controlled by bit 257

220 BE4 Output Cell: Controlled by bit 257

221 BE3 Output Cell: Controlled by bit 257

222 BE2 Output Cell: Controlled by bit 257

223 BE1 Output Cell: Controlled by bit 257

224 BE0 Output Cell: Controlled by bit 257

225 W/R Output Cell: Controlled by bit 257

226 HIT Output Cell

227 CLK Clock

228 ADSC Output Cell: Controlled by bit 257

229 ADS Output Cell: Controlled by bit 257

230 CACHE Output Cell: Controlled by bit 257

231 BRDYC Input Cell

Table 4-9. Boundary Scan Register Bit Definitions (Models 1, 2, and 3)

Bit Pin Name Comments

Boundary Scan Architecture Support 111

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

232 BRDY Input Cell

233 EADS Input Cell

234 PWT Output Cell: Controlled by bit 257

235 LOCK Output Cell: Controlled by bit 257

236 PCD Output Cell: Controlled by bit 257

237 WB/WT Input Cell

238 HITM Output Cell

239 KEN Input Cell

240 AHOLD Input Cell

241 BOFF Input Cell

242 HLDA Output Cell

243 HOLD Input Cell

244 NA Input Cell

245 EWBE Input Cell

246 M/IO Output Cell: Controlled by bit 257

247 FLUSH Input Cell

248 A20M Input Cell

249 BUSCHK Input Cell

250 AP Output Cell: Controlled by bit 213

251 AP Input Cell

252 D/C Output Cell: Controlled by bit 257

253 BREQ Output Cell

254 SMIACT Output Cell

255 PCHK Output Cell

256 APCHK Output Cell

257 PRDY Output Cell

258 Control Direction Control. See Table 4-7.

259 INV Input Cell

260 FERR Output Cell

261 IERR Output Cell

Table 4-9. Boundary Scan Register Bit Definitions (Models 1, 2, and 3)

Bit Pin Name Comments

112 AMD-K5 Processor Test and Debug

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

Hardware Debug Tool (HDT)

The Hardware Debug Tool (HDT)—sometimes referred to as
the debug port or Probe Mode—is a collection of signals, regis-
ters, and processor microcode that is enabled when external
debug logic drives R/S Low or loads the processor’s Test Access
Port (TAP) instruction register with the USEHDT instruction.

Array Pointer Formats A-1

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

Appendix A

Cache

The individual locations of all SRAM arrays on the AMD-K5
microprocessor are accessible with the RDMSR and WRMSR
instructions. To access an array location, set up the Array
Access MSR code (82h) in ECX, and the array pointer
(described below) in EDX. EAX holds the data to be read or
written.

A.1 Array Pointer Formats

Note: The term “column” in this description refers to the “way”—
one of the four blocks in the 4-way associative set at a par-
ticular index.

The array pointer in EDX specifies a particular array, column,
index, and possibly word or dword, depending on the array to
be accessed.

A-2

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

Table A-2 defines the array identification value to be used
when accessing the various arrays.

Table A-1. Cache Array Pointer Formats

Bits 29–28 27–20 19 18–13 12 11 10 9 8 7–0

DCACHE tag
array Column NA NA tag array

index NA NA NA NA NA array to be
accessed

DCACHE
dword and
data array
index in block

Column NA NA
data array
index

DCACHE dword index
into the block NA NA

array to be
accessed

ICACHE index
and word—
Model 0

Column NA ICACHE index for all ICACHE
arrays

ICACHE word (two
instruction bytes +
associated prede-
code information

NA array to be
accessed

ICACHE index
and word—
Model 1

Column NA ICACHE index for all
ICACHE arrays

ICACHE
Packet
Select

NA

ICACHE word (two
instruction bytes +
associated prede-
code information

array to be
accessed

4-Kbyte TLB
index

Column NA NA NA TLB index array to be
accessed

4-Mbyte TLB
index

Column NA NA NA NA NA NA NA NA array to be
accessed

Notes:
For the instruction cache and data cache, the index/dword/word fields line up with a normal address, except that they are shifted to
the left by 8 bits.

Table A-2. Cache Array Identification Values

Bits 7–0 (MSB to LSB) Array to be Accessed

00h Data Cache Array

E1h Data Cache Linear Tag/Status Array

ECh Data Cache Physical Tag Array

E4h Instruction Cache Store Array

E5h Instruction Cache Linear Tag Array

EDh Instruction Cache Physical Tag Array

E6h Instruction Cache Valid Bit Array

E7h Instruction Cache Branch Prediction Array

E8h Translation Lookaside Buffer 4-Kbyte Page Frame/Status Array
Notes:

Although EDX is normally cleared on RDMSR, it remains intact during array accesses.

AMD-K5 Model 0 Array Data Formats A-3

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

A.2 AMD-K5 Model 0 Array Data Formats

E9h Translation Lookaside Buffer 4-Kbyte Linear Tag Array

Eah Translation Lookaside Buffer 4–MByte Page Frame/Status Array

Ebh Translation Lookaside Buffer 4–MByte Virtual Tag Array

Table A-3. AMD-K5 Model 0 ICACHE Physical Tags

Bits 31–21 Bit 20 Bits 19–0

0 Valid Bit Tag (Physical Address 31–12)

Table A-4. AMD-K5 Model 0 DCACHE Physical Tags

Bits 31–23 Bits 22–21 Bits 20–0

0 MESI (00=invalid, 01=shared, 10=modified, 11=exclusive) Tag (Physical Address 31–11)

Table A-5. AMD-K5 Model 0 DCACHE Data

Bits 31–0

Data

Table A-6. AMD-K5 Model 0 DCACHE Linear Tag

Bit 27 Bit 26 Bit 25 Bit 24 Bit 23 Bit 22 Bit 21 Bits 20–0

PCD PWT Dirty Bit User/Supervisor Bit R/W Bit 0 Linear Valid Bit Tag

Table A-2. Cache Array Identification Values (continued)

Bits 7–0 (MSB to LSB) Array to be Accessed

Notes:
Although EDX is normally cleared on RDMSR, it remains intact during array accesses.

A-4

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

Table A-7. AMD-K5 Model 0 ICACHE Instructions

Bit
25

Bit
24

Bit
23

Bit
22–21

Bit
20–13

Bit
12

Bit
11

Bit
10

Bit
9–8

Bit
7–0

prefix 1 byte 1 prefix 0 byte 0

start
bit end bit opcode

bit
map

(rops/mrom) byte 1 start
bit

end
bit

opcode
bit

map
(rops/mrom) byte 0

Table A-8. AMD-K5 Model 0 ICACHE Linear Tag

Bits 19–0

Linear Address 31–12

Table A-9. AMD-K5 Model 0 ICACHE Valid Bits

Bits 31–19 Bit 18 Bit 17 Bit 16 Bits 15–0

0 D linear tag valid bit user/supervisor byte-valid bits

Table A-10. AMD-K5 Model 0 ICACHE Branch Prediction

Bits 31–19 Bit 18 Bits 17–14 Bits 13–12 Bits 11–4 Bits 3–0

0
predicted

taken
byte offset within block of last byte

of predicted branch instruction
column of

predicted target

index of
predicted

target

target
byte

Table A-11. AMD-K5 Model 0 TLB 4-Kbyte Linear Tag

Bits 31–20 Bit 19 Bit 18 Bit 17 Bit 16 Bit 15 Bits 14–0

0 global valid
bit dirty bit user/supervisor

bit
read/write

bit valid bit tag
(linear address 31–17)

AMD-K5 Models 1, 2, and 3 Array Data Formats A-5

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

A.3 AMD-K5 Models 1, 2, and 3 Array Data Formats

Table A-12. AMD-K5 Model 0 TLB 4-Kbyte Physical Page Frame

Bits 31–22 Bit 21 Bit 20 Bit 19–0

0 PCD bit PWT bit Page frame address
(physical address 31–12)

Table A-13. AMD-K5 Model 0 TLB 4-Mbyte Virtual Tag

Bits 31–15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9–0

0 Global valid bit dirty bit user/supervisor read/write bit valid bit
tag

(linear address 31–22)

Table A-14. AMD-K5 Model 0 TLB 4-Mbyte Physical Page Frame

Bits 31–12 Bit 11 Bit 10 Bits 9–0

0 PCD bit PWT bit Page frame address
(physical address 31–22)

Table A-15. AMD-K5 Models 1, 2, and 3 ICACHE Physical Tags

Bits 31–21 Bit 20 Bits 19–0

0 Valid Bit Tag (Physical Address 31–12)

Table A-16. AMD-K5 Models 1, 2, and 3 DCACHE Physical Tags

Bits 31–23 Bits 22–21 Bits 20–0

0 MESI (00=invalid, 01=shared, 10=modified, 11=exclusive) Tag (Physical Address 31–11)

Table A-17. AMD-K5 Models 1, 2, and 3 DCACHE Data

Bits 31–0

Data

A-6

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

Table A-18. AMD-K5 Models 1, 2, and 3 DCACHE Linear Tag

Bit 28 Bit 27 Bit 26 Bit 25 Bit 24 Bit 23 Bit 22 Bit 21 Bits 20–0

WB PCD PWT Dirty Bit User/Supervisor Bit R/W Bit 0 Linear Valid Bit Tag

Table A-19. AMD-K5 Models 1, 2, and 3 ICACHE Instructions

Bit
25

Bit
24

Bit
23

Bit
22–21

Bit
20–13

Bit
12

Bit
11

Bit
10

Bit
9–8

Bit
7–0

prefix 1
byte

(n + 8) prefix 0 byte (n)

start
bit end bit

opcode
bit

map
(rops/mrom)

byte
(n + 8)

start
bit

end
bit

opcode
bit

map
(rops/mrom) byte (n)

Table A-20. AMD-K5 Models 1, 2, and 3 ICACHE Linear Tag

Bit 22 Bit 21 Bit 20 Bits 19–0

D Linear Valid Bit User/Supervisor Bit Linear Address 31–12

Table A-21. AMD-K5 Models 1, 2, and 3 ICACHE Valid Bits

Bits 31–0

byte-valid bits

Table A-22. AMD-K5 Models 1, 2, and 3 ICACHE Branch Prediction

Bits 31–19 Bit 18 Bits 17–14 Bits 13–12 Bits 11–4 Bits 3–0

0 predicted
taken

byte offset within block of last byte
of predicted branch instruction

column of
predicted target

index of
predicted

target

target
byte

Table A-23. AMD-K5 Models 1, 2, and 3 TLB 4-Kbyte Linear Tag

Bits 31–20 Bit 19 Bit 18 Bit 17 Bit 16 Bit 15 Bits 14–0

0 global valid
bit dirty bit user/supervisor

bit
read/write

bit valid bit tag
(linear address 31–17)

Table A-24. AMD-K5 Models 1, 2, and 3 TLB 4-Kbyte Physical Page Frame

Bits 31–22 Bit 21 Bit 20 Bit 19–0

AMD-K5 Models 1, 2, and 3 Array Data Formats A-7

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

0 PCD bit PWT bit
Page frame address

(physical address 31–12)

Table A-25. AMD-K5 Models 1, 2, and 3 TLB 4-Mbyte Virtual Tag

Bits 31–15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9–0

0 Global valid bit dirty bit user/supervisor read/write bit valid bit
tag

(linear address 31–22)

Table A-26. AMD-K5 Models 1, 2, and 3 TLB 4-Mbyte Physical Page Frame

Bits 31–12 Bit 11 Bit 10 Bits 9–0

0 PCD bit PWT bit Page frame address
(physical address 31–22)

Table A-24. AMD-K5 Models 1, 2, and 3 TLB 4-Kbyte Physical Page Frame

A-8

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

	Contents
	List of Tables
	List of Figures
	Revision History
	AMD�K5™ Processor x86 Architecture Extensions
	Additions to the EFLAGS Register
	Control Register 4 (CR4) Extensions
	Machine-Check Exceptions
	4-Mbyte Pages
	Global Pages
	TLB Flushing

	Virtual-8086 Mode Extensions (VME)
	Interrupt Redirection in Virtual-8086 Mode Without...
	Hardware Interrupts and the VIF and VIP Extensions...
	Software Interrupts and the Interrupt Redirection ...

	Protected Virtual Interrupt (PVI) Extensions

	Implementation of Write Allocate
	Model-Specific Registers (MSRs)
	Machine-Check Address Register (MCAR)
	Machine-Check Type Register (MCTR)
	Time Stamp Counter (TSC)
	Array Access Register (AAR)
	Hardware Configuration Register (HWCR)
	Write Allocate Top-of-Memory and Control Register ...
	Write Allocate Programmable Memory Range Register ...

	New Instructions
	CPUID
	CMPXCHG8B
	MOV to and from CR4
	RDTSC
	RDMSR and WRMSR
	RSM
	Illegal Instruction (Reserved Opcode)

	Code Optimization for the AMD�K5 Processor
	Code Optimization
	General Superscalar Techniques
	Techniques Specific to the AMD�K5 Processor

	Dispatch and Execution Timing
	Notation
	Integer Instructions
	Integer Dot Product Example
	Floating-Point Instructions

	AMD�K5 Processor Initialization
	General Registers
	Segment Registers
	EIP and EFLAGS
	Control and Debug Registers
	Model-Specific Registers
	Caches and TLB
	Floating-Point Unit

	AMD�K5 Processor Test and Debug
	Hardware Configuration Register (HWCR)
	Built-In Self-Test (BIST)
	Normal BIST
	Test Access Port (TAP) BIST

	Output-Float Test
	Cache and TLB Testing
	Array Access Register (AAR)
	Array Pointer
	Array Test Data

	Debug Registers
	Standard Debug Functions
	I/O Breakpoint Extension
	Debug Compatibility with Pentium Processor

	Branch Tracing
	Functional-Redundancy Checking
	Boundary Scan Architecture Support
	Boundary Scan Test Functional Description
	Boundary Scan Architecture
	Registers
	Instruction Register

	JTAG Register Organization
	Boundary Scan Register
	Device Identification Register

	Public Instructions
	EXTEST
	SAMPLE/PRELOAD
	IDCODE
	HIGHZ
	ALL1
	ALL0
	RUNBIST
	BYPASS

	Hardware Debug Tool (HDT)

